ENGINEERING TRIPOS PART IIB

Friday 23 April 2004 9t0 10.30

Module 4C1

DESIGN AGAINST FAILURE
Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
(i) Fracture mechanics datasheet (8 pages)
(ii) Elasticity and plasticity formulae (2 pages)

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you may
do so by the Invigilator
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1 A dislocation with Burgers vector b is pinned at the two endpoints, leaving a
segment of length / that is free to glide under a shear stress 7 as shown in Fig. 1. As
the shear stress 7 is gradually increased, the dislocation bows out with a displacement

profile u(x).

(a) Describe what is the line tension T of a dislocation and hence explain why
the dislocation tends to be straight in the absence of stresses. [15%]

(b) Show that the energy of the bowed segment is given by:
/2 ; /2
E[u(x)]= L/ZT 1+u?dx— [//z thu(x)dx

where u'=du/dx. [25%]

(c) By solving the differential equation

i[ T ]——rb

dx V1+u?

with the appropriate boundary conditions, show that the displacement profile of the
dislocation is given by u(x) = /(T /b)2 —x2 ~\(T/zb)* 1214 | [45%]

(d) Show that when the bow-out is small (that is Iu'| << 1), the bow-out profile

can be approximated by u(x)= (21'b/T)(l2 —4x? ) ) [15%]

Pinning
M () « point
I /2 /2 |

Fig. 1
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2 Creep tests are carried out on thin walled cylindrical tubes of radius R and wall
thickness ¢ at a temperature of 210°C. The tubes are subjected to an internal pressure p
and an axial tensile force F . The tubes are either made of copper or an aluminium alloy,
and the magnitude of p and F can be independently varied. For both materials, the
creep strain rates £ are related to the applied stress o in a uniaxial test by

E=&p (0'/0'0)6 where &y and o are reference values. The corresponding times to
failure ¢, are: '

tf ‘—‘AO'_6

where A is a constant having the same value for both materials. Under multiaxial stress

states and at 210°C, copper fails according to the maximum principal stress criterion
whilst the aluminium alloy fails according to the von Mises criterion.

(a) For tubes made of the aluminium alloy, derive the individual components of
creep strain rate as functions of the loading parameters p and F .

(b) Plot for both tubes, the isochronous failure surface in principal stress space.

(c) Let a=0,/0, denote the ratio of the longitudinal stress to the hoop stress

and let [ = tj(’:" / t}“ denote the ratio of time to failure for copper and aluminium alloy
tubes. Assuming a <1, plot / as a function of «, and identify the value of a at which

t}‘" = tfl and the values of a at which / reaches its minimum.

(TURN OVER
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3 (a) Briefly explain the concepts of small scale yielding and large scale yielding
in fracture mechanics and discuss the applicability of K as a fracture criterion.

(b) Explain the physical basis of R-curves in metals and the effect of adding
fibre reinforcement on the R-curves.

(c) A semi-infinite crack in a thin sheet is subjected to a concentrated load P at

adistance L from the crack tip as shown in Fig. 2. The material tensile yield strength is
given as oy . For this situation determine:

(1)  The plastic zone size using the Irwin model.
(1) The plastic zone size according to the Dugdale model.

(d) Estimate the plane stress plastic zone size for a semi-infinite mode II crack
in an elastic-plastic solid of shear yield strength 7, by using the Dugdale model. Give

your answer in terms of the mode II stress intensity factor Kj;.

Fig. 2

[20%]
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4 (a) Show that the energy release rate G in a cracked body of compliance C
and subjected to a load P is given by

1 P2 ac

"2 B éa
where a is the crack length and B is the thickness of the body. [30%)]
(b) A long strip of height 2h and thickness B (into the page) with a crack of
length 2a is subjected to a uniform stress o along its upper and lower faces as shown
in Fig. 3a. For a>>h :

(1) Calculate the strain energy release rate G. [40%)]

(if) Calculate the stress intensity factor K; assuming plane stress
conditions. [10%)]

(c) A long, thin-walled circular tube of radius R and wall thickness ¢ contains
a crack of length 2a through the wall of the tube as sketched in Fig 3b. The crack is
inclined at an angle @ to the axis of the tube. Calculate the stress intensity factors K;

and K, for loading comprising an axial force F . [20%]

tttttttt1tt
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Fig. 3b
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Crack tip plastic zone sizes

f

2
-l—[ﬁ) Plane stress

. T\ Oy
diameter, d p =1 )
L[—K—’] Plane strain
| 37\ oy
Crack opening displacement
2
X Plane stress
oyE
0 =1
1 K?
——="—  Plane strain
| 20y
Energy release rate
1 2
EK T Plane stress
= 1-42
- K12 Plane strain
E
2
Related to compliance C: G=l i E
2 B da
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Asymptotic crack tip fields in a linear elastic solid
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Crack tip stress fields (cont'd)
Mode II
Cypy = Ky cos-e- sing cos2
Vo2mr 272 2

Ky sin 2 (2 +cos—g—cos§22)

1/27" 2

6( . 0 . 36)
cos— | 1—sin—sin—
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KII 1 6 3 36
T,9= —cos—+—=cos—
4 2 4 2

—KE”- N’{; (—H_Lv+cos2 —g—) sing Plane stress

El JL (2—2v+cos2—e—) sing Plane strain
G \2&m 2 2

-K—IL 1,L (-‘-’-“—1+sin2 9-) cosg Plane stress
G V2@ \1+v o2 2

E”— 1’—'.- (-—1 +2V+sin2—9-) cos-e- Plane strain
G \2rx¢ 2 2

Mode III
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Tables of stress intensity factors
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value of F (a/r)t
Fo\ _. _% One crack Two cracks
dolal- t oy a u
o;olllllllrl 000 336 224 336 224

0.10 273 1.98 2.73 1.98
0.20 230 1.82 241 1.83
0.30 2.04 1.67 2.15 1.70
0.40 186 - 158 1.96 1.61
0.50 1.73 149 1.83 1.57
0.60 1.64 1.42 1.71 1.52
0.80 147 132 1.58 1.43

1.0 137 122 145 138
1.5 1.18 1.06 129 1.26
2.0 1.06 1.01 121 1.20
3.0 0.94 0.93 1.14 1.13
50 0.81 0.81 1.07 1.06
10.0 0.75 0.75 1.03 1.03
o 0.707 0.707 1.00 1.00

+tU =uniaxial 0, B =biaxial 0.
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ELASTICITY and PLASTICITY FORMULAE

1. Axi-symmetric deformation : discs, tubes and spheres

Equilibrium

Lam’s equations (in elasticity) Oy = A — 2 -8 paPre —

Discs and tubes

d
an='(—:1'gn_) + pa?r?

B 3+v

B 1+3v

oag=A+r—z-pr2r2 +73

2. Plane stress and plane strain

Strains

Compatibility

or (in elasticity)

Equilibrium

V4¢ = 0 (in elasticity)

Airy Stress Function

artesian c inates

ou
Exx = 9x

&
&y = 9y

v
Yxy =3y + ox

oxdy = g2 t Tae

32 a2
'a'x_z + ?ﬁ (Oxx+0oyy) =0

d0xx ao,q!
ox tTay = Y

90, 90
= | 22X
gy t* ox = 0

o .
w2t o laz * ol =0

29
Oxx = ay?
&9
Oy = 552
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Oxy = ~9xdy
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Polar coordinates
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3. Torsion of prismatic bars
. dF dF
Prandtl stress function: 0 (%) =gy » Oy (=%) = -

Equilibrium: T = 2fFdA
A

Governing equation for elastic torsion:  V2F = -2GB where B is the angle of twist per unit length.

4. Total potential energy of a body
n=U-w

where U = %—J £TDlgdv , W=PTu and [D] is the elastic stiffness matrix.
\4

5.  Principal stresses and stress invariants

Values of the principal stresses, op, can be obtained from the equation

Oix—Op  Oxy Oxz
Oxy Oy—0Op Oy =0
Gz Oy Oz-0p

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.

Expanding: op - 1Liop? + hop - 13 = 0 where I} = oxx + Oyy + Og,

Oxx Oxy Oxz
I Oyy Oyz Oxx Oxz Oxx Oxy
I = + + and Iz = Oxy Oyy Oyz
27 lop o Ou Oz Oy Oyy ?
Oxz Oyz Oz

6. Equivalent stress and strain

_ 1
Equivalent stress & = '\/‘;‘{ (01-2)? + (02— ;) + (03-01)2 12

. - - 2 2 172
Equivalent strain increment dé  ="\[3 ( de12 + de? + des?,

7.  Yield criteria and flow rules

Tresca

Material yields when maximum value of loy — 03l, o2~ 03l or los -0yl = Y = 2k, and then,

if o3 is the intermediate stress, dej :dep:des = A(1:-1:0) where A #0.

von Mises

Material yields when, (01 - )2 + (02-03)2 + (03-03)2 = 2Y2 = 6k2,and then
dep dep deg dej —dey _ dey ~-des dez —dg 2_2
G T H T H T o-e; T g-a - w-a - A=73
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