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Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate number of marks allocated to each part of a question is
indicated in the right margin.

Candidates may bring their notebooks to the examination.

Attachments:
i) Special datasheet (2 pages).

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you
may do so by the Invigilator.
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1 (a) A sinusoidal pressure distribution p(x)= pycos(zx/ L) acts on one edge
of an infinitely large plate. On this edge, the shear stress is zero.

(i) For an Airy's stress function of the form ® = f(y)cos(mx / L), obtain
an expression for f(y) that satisfies the equations of equilibrium and
compatibility. [25%]

(i1) Obtain expressions for stresses Oxx:0yy,0x, Dear the edge of the

plate. [25%]

(cont.
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Fig. 1

(b) Figure 2 shows a square plate containing a central hole of radius a; the side
length and thickness of the plate are 2b (b > a) and ¢, respectively. A uniform pressure
p applied to the surface of the hole is gradually increased until the collapse pressure

pL is reached. The plate is composed of an incompressible and rigid, perfectly-plastic

material that has shear yield stress 7, and yields according to Tresca's criterion.

(i) Consider a cylinder bounded by the inner surface of radius a and the
external surface of radius b (represented by the dashed circle in Fig. 1).
Assuming plane strain and stress-free boundary condition at the external
surface, show that, after yielding has occurred, a statically admissible field
in the cylinder is given by:

0., =—-p+0oyln(r/a), 0'39=—p+0'0[1+ln(r/a)], 0,=0, for asr<d

where a<r<d is the yielding zone and d <b. Hence obtain a lower

bound solution of the collapse pressure pL for the square plate.

(ii) How would your solution to pL change if the plate satisfies plane
stress conditions?

(TURN OVER
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2. Consider a thin-walled cylinder subjected to a combined loading of torsion and
longitudinal tension. A infinitely small material element taken from the wall of the
cylinder has longitudinal stress o, shear stress 0oy, , longitudinal strain &,, and

engineering shear strain ¥, (= 2892) in the cylindrical coordinate system. The

material of the cylinder is incompressible and elastic-perfectly plastic, with Young’s
modulus E, shear modulus G and tensile yield stress Oy and yields according to the
Mises criterion.

(a) By introducing the following non-dimensional variables:

0-=O-ZZ, 2_:0'9;, gzig_, },_79§
O'y T 8}’ }’y

where Ty =0,/ V3 is the yield stress in shear, £y

the Mises yield criterion for the cylinder can be written as

=0'y/E and 7, =1'y/G,show that

o?+r? =24yt =1 [25%]

(b) Using the Levy-Mises constitutive relations deif =s,-jdl and the yield

criterion derived in (a), show that:

de-do _o d_"=\[1_02(‘{1—03—ad—7) [50%]
dy-dt 7 de de

(cont.
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(c) The loading of the cylinder is displacement-controlled. Consider the
deformation history from a to b as shown below in Fig. 2:

Yi g 5
*
= >
Fig. 2

Determine the relationship at b between axial strain € and stress o if at deformation
state a, the stresses and strains are as follows: o=0y, T=7y, €=&) andy=7;. [25%)]

. dx 1 1+
(Hint: Il_x2=EInI—_—i, ld<1)

(TURN OVER
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3. Figure 3 shows a thin square plate with uniform thickness, density o and sides

of length 2a. The plate rotates at angular speed {2 about the horizontal centreline y =
0. All edges and surfaces are traction free.

(a) Write an expression for the complete stress field in the rotating plate.

(b) Transform your solution to polar coordinates with origin at the centre and
give expressions for the state of stress at an arbitrary point r,6. For a centred circular
disk of radius fa, 0 < f< 1, inscribed in the square, find the traction t(/fa,6) given
by the stress field from part (a) evaluated at the edge of the disk. Show that the
components of the traction can be expressed as

6, (fa,b) =a[(4-—3ﬂ2)—‘4(1—,82)00526—,82 cos449],

0,9 (Ba,0)= a[(4—2ﬂ2)sin 20+ B 2sin 49]

where you are to obtain an expression for the constant .

(c) For a thin square plate with side length 2a, a central hole with radius fa
and no body force, find a stress field that satisfies the traction boundary condition in
part (b), without regard for the external boundary.

(d) Explain whether superposition of the solutions to parts (a) and (c) can be
used to obtain the stress field in a square plate with a central circular hole when the
plate is rotating about a diametral centreline =0 at angular speed £2. If thisisnota
complete solution, what else is required?

(cont.
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POLAR (CYLINDRICAL) COORDINATES
TRANSFORMATION: Cartesian — Cylindrical

x=rcosé@, y=rsinf
r?=x? +y2 s O=arctan(y/x)

notice that
8 3r8+393 coso-é--m;ei
a: a&or xadb or r d0
@ ord 907 . .0 cos@d

S ya e 0t %

hence equil. and compatibility satisfied if V¥¢=0 where
# 19 1 3*

-t

V2=
or* ror r¢oe*

Op =0xz cos2 6+ Oyy sin2@ ~20yysinfcos@

_lde 1 3%
r&' 77392
1a¢)

760 =7' oo '“737(r 2

Displacement components and strain-disp. relations

Uy = U, cos@ —ugsin@
Uy = Uy sin6 + ug cos@

_ Ouy, 1w  ur _(léz Qg Uy
r=% 0=t #T( 1%
HARMONIC FUNCTIONS:

o= Zf,,(r)cosn9+ zg,,(r)smne
n=1
2
d 1d n?
0=v* _—— =
¢ = (P‘ T3 7) fn 0
has solution
fo= A" +Apriinr+ Aglnr+ Ay,
A= Aur3 + Ajarinr + Aj3r + Ay
o= A 2+ Appr M L A A yrh, =23,



UNIVERSITY OF

(

;+_Vlz
a—g¢)
ap-g=y

ssa1)s aue|d 0] jsiym

uren)s aue|d 10,

usod | _, _Ju— guus _,_su| guuls,_d
QU S0d | _, tu— Quuls |, 4u— Qu uis 4
gusod |, ([ +u—)| guuis pu—d(1—u4¥)| guuis, ., 4
gusod (1 +u+¥)—| guuts 4] —u-—w)| guuis,, 4
guuis | _,_Ju QuUS0d |, Ju| Qusod , 4
Quuis |_Jdu Qusod | _ 4u— QU SOD i
Qu uis .+.T.A— +u—¥)—| gusod _+=|.A.~ —u+w)| gusod 24u-
Cguuis (T Hut )| gusod pul(l —u—=%)| gusod, 4
«L\e S0) — «L\e uts 4/ uts
Smou:wo_:lz:. guisaoj (1 — %)+
9s0d + guisg(1 + ¥)|% | guis — gsod g(1 + ¥)—]§ | guis430]4
[9 502 4801 (1 + ¥)— [guts 480y (1 + ¥)—
9500 — guisg(1 —)—|¥ | guis+gso2g(1 - ¥)If 6502 g4
9502 ,4(Z + ¥)— guis ;4(g — ¥) g uts o4
/g uis ¢4/ 502 4/ 502
[g wis 8oy (1 - ¥)- [9 8024301 (1 - )+
guis — gsod g(1 + ¥)}% emoula.__ma:...av_m 0 50> 1 30] 4
[puis 4 8oy (1 + ¥)— [g 800 480y (1 + %)+
guis = gsoog(1 —¥)|§ | gsoo—gusg(1— )i g uis g4
guis 4(g + ¥) 9509 ,4(g — ¥) 502 ot
/1~ 0 0
0 4f1- + 30j
04(1 + ¥) 4 —a8opa(] — ¥) 430
0 A1 =) ot
onalg ‘nrig ¢

sjuauodiuod juawade|dsip — uolN[os [[PYIIA Y], [°6 2|qel

Sg1d "Pa pig *191po0D 7 ONuAYsoWL

(A=)l =

(a-ptog-=1q

‘0=90q :ssons sueyd

a+x)b=0-xlq .:+5_otu:.{55 ‘0=9q :urens sueyd

‘aouay *(x7'4)0n = (Q'4)0n Ssa1nbai -dsip panjea aj3uis ‘ajoy punoly

guus, ,_4(1+u)u| gusod,, 4(1+u)u guuis, ,_s(1+u)u—| guuis,_d
guuis, H(1—u)u| gu 8§00, ,4(] —u)u— guuis, (1 —u)u— pu US4
guuis,_4(g—u)(1-u) gusod, (1 —u)u | guuis,_4(1—u)(g+u)—| gu uisy_
uuis4(z+u)(1+u) usod (1 +uju—| gu uts,4(g—u)(1+u)— | guuis,us
gusod, , 4(1+u)u | guuis, ,_4(1+u)u— gus0d, (1 +u)u—| Qusod, 4
gus02,_4([—u)u guuls, (1 —u)u Pu 500,y t( ] —u)u— QU 5024
pusod,_us(g—u)(1—u)| guuis,_4(1—u)u—|gu 800, _4([—u)(g+u)—| QU S0d fyu
ousod, 4(z+u)(1+u) guuts a([+u)u| gusod u(g—u)(1+u)—| U0,y
ctlouisg ct/0500g ct/ousg— +/guts

4fguis 4/ 800 — 4fguis | g uis.s 3o

0 0 4/guisg— 05024

o uis 49 0502 4g— g uIs 47 g uls o4

e4/98002 clfousg— c4/98022— 4/g 500

4/9 50> 4/ uis 4/gs0o | gs02.430]4

0 0 4/gs0dg o uis g4

@ 502 49 g uis g 0502 4 502 o4

0 A 0 0

/1= 0 41 +30]

€+ 43017 0 1+ 489012 430] ;4

(4 0 (4 z?

080 0o 40 ¢

sjuauodulod ssal)s — uoIIN|os __E—um.s_ aYL :1'8 2qelL

-

'}1J202



	
	
	
	
	
	
	
	
	
	

