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1 Explain the following

(a) The cell membrane of red blood cells has a very low elastic modulus, but a
large lock-up strain and a high ultimate strength.

(b) Wood is strongly anisotropic, with a compressive strength along the grain
an order of magnitude greater than that across the grain.

(c) Proteins are transported within cells at much faster rates than diffusion can
provide.

(d) Plants and animal cells have different strategies for harvesting energy.

2 (a) Describe the physical basis for the Young’s modulus of biological tissues by
explaining how the following concepts dictate the modulus:

(i) persistence length
(i) nodal connectivity

(b) Qualitatively describe the myosin crossbridge cycle with reference to
conversions of ATP to ADP.

(¢) Describe the tension versus length curve of a single muscle fibre. Suppose
that the tension decreased nonlinearly with increasing length for striation spacings
greater than 2.5 pm. Would this invalidate the theory that the crossbridges working
independently generate the tension?
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3 In the Huxley crossbridge model for a muscle, n(x) is the fraction of attached

crossbridges, where x is the position of an actin binding site from the equilibrium
position of a myosin head. Assume that the attachment and detachment of the
crossbridges is governed by a first order kinetic scheme with attachment and

detachment constants f (x) and g(x) , respectively.

(a) Determine the steady-state n(x) in terms of f(x) and g(x) for a muscle

in isometric tension. [10%)]

(b) Given that:

f(x)=0; g(x)=g; x<0 :
f(x)=1os g(x)=g¢; 0<x<h:
f(x)=0; g(x)=go x>h:

determine n(x) for shortening at a constant velocity ¥ =—dx/di . Here gq, fy and
h are constants. [50%]
(c) Writing any appropriate equations, explain how one might use the Huxley

crossbridge dynamics model to calculate the response of a muscle in Hill’s quick-
release experiments (step change in tension). [40%)]
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4 (a) Describe the functions of arteries and veins in blood flow. Comment on why
there is no reverse flow in the veins.

(b) Describe the role of capillaries in blood flow.

(¢) Consider a thin-walled cylindrical tube of length L, radius » and wall
thickness ¢ subjected to an internal pressure P. The radius of the tube 1s 7y at zero
pressure, and the tube is made of an elastic material having Young’s modulus E. If the
cross-sectional area of the tube varies linearly with pressure, show that the compliance

per unit length of the tube can be approximated as ¢ =27 r /(Et) .

(d Comment on why pulmonary and systemic capillaries can be modelled as
resistance vessels whereas large arteries cannot, and explain why veins are more
compliant than arteries (for a fixed vessel radius).

(e) There is blood flow across the cylindrical vessel described in (c), with inlet
pressure P, and outlet pressure. A . It can be shown that the flux of blood is given by:

ot (1+7P0)3—(1+yP1)3
Q—24uL ¥

where ¥ = c/(z* ) and p is the viscosity of blood.

(1) Explain why the pressure drop in the veins can be much less than in
the arteries.

(i) Show that, in the limit ¢ — 0, the blood vessel reduces to a resistance

vessel, with its resistance per unit length given by p=8u/ (72' r4) .

[Hint: x° —=y® =(x-y)(x* +xp+y*) ]

END OF PAPER
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Paper G4: Mechanics of Solids
ELASTICITY and PLASTICITY FORMULAE
1. Axi-symmetric deformation : discs, tubes and spheres
Discs and tubes Spheres
d(ro; 1 d(r2om)
Equilibrium Oge = dr") + pw?r? OB = 37 ar
B 3+v Ea ’ B
Lam’s equations (in elasticity) Op = A — ;2’ -3 pw?r: — r—zferr Or = A - r—3
C
B 1+3v Ea * B
o= A + 7 - 7% pw2r2+r—2fr7‘dr—EaT Ogp = A + 53

C

2. Plane stress and plane strain

Cartesian coordinates

. Ju
Strains &x = Jx
&
&y = 9y
o o
xy =3y * ax
oo aZYxx 82exx azfyy
Compatibility 3xdy = 32 + 2

or (in elasticity)

a0, d0;
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dy ox =
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Polar coordinates
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3. Torsion of prismatic bars

. dF dF
Prandtl stress function: 0x (=7x) = D Ty =) =-F

Equilibrium: T = 2fFdA
A
Governing equation for elastic torsion: ~ V2F = —2GB where f8 is the angle of twist per unit length.

4. Total potential energy of a body
O=U-w

] . . .
where U = EJ ET [Dlgdv , W =P Tg and [D] is the elastic stiffness matrix.
1%

5. Principal stresses and stress invariants

Values of the principal stresses, Op, can be obtained from the equation

Oxx — Op Oxy Oxz
Oxy Oyy—-0Op Op =0
Oxz Oyz Oz — Op

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.

Expanding: op> - Iyop? + hop — I3 = 0 where I} = oxx + Oyy + Oz,

Oxx Oxy Oxz
Oyy Oyz Oxx  Oxz Oxx Oxy
L = + and I3 = Oxy Oyy Oyz
Oyz Oz Oxz Oz Oxy Oyy
Oxz Oyz Oz
6. Equivalent stress and strain
. - 1 2 ) 12
Equivalent stress & = \|7 ( (01 - 02)2 + (02— 03)2 + (03— 01)%,
: . - 2 , 12
Equivalent strain increment de  ="\J73 ¢ dey?2 + dep? + dea=y
7.  Yield criteria and flow rules
Tresca
Material yields when maximum value of lo] — 03!, oz - 03l or lo3— o1l =Y = 2k, and then,
if o3 is the intermediate stress, dej:dey:des = A(1:-1:0) where A #0.
von Mises
Material yields when, (01 — 02)2 + (02~ 03)2 + (03— 01)2 = 2Y2 = 6k2, and then
dey dey de3 de; —dep dey —des dez —deg g,_dE
Gl T o T 0 T o-®m T ;- = o-o -4 =72%
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