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1 () By considering a sliding block, show that in a purely frictional material
obeying the normality principle there is no internal energy dissipation along a slip
surface.

[30%]
The same result holds for regions of shear.
(b) The bearing capacity factor N, of a smooth surface strip footing is defined
as the ratio of the vertical bearing pressure at failure, g, divided by the surcharge acting
alongside the footing, o’y,. By considering the work dissipated in the upper bound
mechanism shown in Fig. 1, show that for a weightless frictional (Coulomb) soil
obeying normality,
T
N, = tanz(— + ?-j exp(7 tan @)
4 2
Hint: since BC is a log spiral, velocities v; and v, are related by:
(7: tan ¢j
v, =V, exp
2
[70%]
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Fig. 1. Strip footing upper bound mechanism.
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2 A plan view of a proposed building and the corresponding ground conditions are
shown in Fig. 3. The building will be constructed on a raft foundation. The base of the
raft will lie 2 m below the original ground level. The weight of the building and the raft
foundation will be 30000 kN. The water table is at the top of the clay layer. The
compressibility of the sand and bedrock can be ignored. The one dimensional stiffness
of the clay was found from drained one-dimensional compression tests to be:

E, =500(c"))” (both in units of kPa)
VLAY A
Sand 3m
| ¥ =20 kN/m’ -
Plan view A ——
1 30m o
I
B X ' 10m  Clay
| y=18kN/m> 0m
Y
A
Y
Bedrock
Fig. 3. Building and ground conditions
(a) Define and calculate the net bearing pressure exerted by the building. [10%]

(b) Divide the clay stratum into 3 layers and calculate the differential settlement
of points A and B after consolidation of the clay stratum, assuming that the raft exerts a
uniform bearing pressure. [70%]

(c) Suggest two methods by which the foundation design could be changed in _
order to reduce the differential settlement between A and B. [20%)]

(TURN OVER
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3 A building is being designed for an urban site, bounded by existing structures. The
building footprint is to be 15 m x 15 m. The ground conditions are shown in Fig. 2.

VAN 7

$ ——=Z— Water table
5m

Clay

s, =30 kPa

y =18 kN/m’

35m

Dense sand
p=32°

¥ =20 kN/m’
I,=0.75

Fig. 2. Ground conditions

(@) The number of storeys of the building has not been chosen. Each storey will
exert a dead load of 20 kPa and a live load of 10 kPa. Calculate the design ultimate load
per storey if partial load factors of 1.35 and 1.5 are to be applied to dead and live loads
respectively. [10%)]

(b) Calculate the maximum number of storeys that could be supported by a raft
foundation cast at ground level. Apply a partial resistance factor of 1.4 to the bearing
capacity to limit settlements and account for uncertainty in the derived capacity. [30%]

(¢) Calculate the maximum number of storeys that could be supported by 1 m
diameter tubular piles bearing fully into the sand layer. Assume a uniform rectangular
grid of piles at a spacing of 3 diameters to avoid interaction effects. Assume that shaft
adhesion o= 0.8 and use the Fleming et al. (1992) design charts (see databook) to
estimate base resistance. Apply a partial resistance factor of 3 to the pile capacity.
Demonstrate the weak influence of pile diameter on this calculation by repeating the
design for piles of diameters 0.5 m. [40%]

(cont.
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(d) Would pile diameter have a greater influence on the results if the piles were
founded entirely in clay?

(e) Give one advantage and one disadvantage of using few large diameter piles
compared to many small diameter piles at this site

4  An offshore structure is to be installed at a site comprising 30 m of loose sand
overlying dense sand. Assume both strata have a submerged unit weight of 10 kN/m”.
Each leg of the structure will be supported on a group of identical 1 m diameter closed-
ended tubular driven piles. The design storm compression and tension loads that each
leg must sustain are 68 MN and 34 MN respectively.

(a) Using the API (2000) guidelines (see databook), find the variation in unit
end bearing and shaft friction over the depth range 0-50 m. Sketch your results.

(b) Derive expressions for the ultimate compression and tension capacity of a
1 m diameter closed-ended tubular pile as a function of pile length, L, for the range
30<L<50m.

(c) Select the optimum number and length (to nearest 1 m) of piles (i.e.
minimum total pile length). Ignore pile interaction effects and apply a safety factor of 2
to your calculated pile capacity.

(d) The API (2000) guidelines were validated against experience with relatively

short onshore piles. Suggest two reasons why these guidelines may overestimate unit
shaft friction in sand on long offshore piles.

END OF PAPER

[10%]

[10%]

[25%]

[25%]

[40%)

[10%]
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Section 1: Plasticity theory

This section is common with the Soil Mechanics Databook supporting modules 3D1 and 3D2.
Undrained shear strength (‘cohesion’ in a Tresca material) is denoted by s, rather than c,.

Plasticity: Cohesive material Tmax = Su
— Limiting stresses
Tresca |01 - c3| = qu = 28y

. 22 2
vonMises  (c1-p)? + (02-p)? + (63-P2 =5 q; = 25,

where qy is the undrained triaxial compression strength, and sy is the undrained plane shear strength.
Dissipation per unit volume in plane strain deformation following either Tresca or von Mises,

8D = sy dey
For a relative displacement x across a slip surface of area A mobilising shear strength sy , this
becomes

D= ASuX

— Stress conditions across a discontinuity
Rotation of major principal stress

T
0=n/2-Q
Cu
D Sg — Sp = As = 2s,5in0
CiB) — O1(A) = 25y sin6
c
In limit with 6 — 0
ds = 2s,d0
Useful example:
I
| G1A 6 = 30°
Q2=m/4-672 —I_ Sp Glp— G1a=$§
| ‘ :
A \ v The =
D —- D D ’CD/Su = (.87
o ¥ [T
/

. L G1a = major principal stress in zone A
discontinuity

G613 = major principal stress in zone B
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Plasticity: Coulomb material (t/6')max = tan ¢’

- Limiting stresses
$in ¢” = (G”1¢- 6°30)/(0° 15+ 673¢) = (G5~ G31)/(C15+ g - 2U)

where ¢';r and 6’3 are the major and minor principal effective stresses at failure, 6, and o3¢ are the
major and minor principal total stresses at failure, and u; is the steady state pore pressure.

— Stress conditions across a discontinuity

Rotation of major principal

. stress
¢I
=" -Q
D %
Q G1a = major principal stress in
L) zone A

G| = major principal stress
in zone B

tand=1p/6’p

\ sin Q = sin &/ sin¢’
\ $'8/s’a = sin(Q + 8)/sin(Q - §)
Q +05)/2
( ) \ \GD A D - ,
7 U In limit, 80 — 0and & — ¢,
/

ds’'=2s".86 tan ¢’

discontinuity
o7
/

Integration gives s’p/s’s = exp (20 tan ¢’)

18 @ Y
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Section 2: Bearing capacity of shallow foundations
2.1 Cohesive (Tresca) soil, with undrained strength s,.

The general equation for the bearing capacity, gy, of a shallow foundation on cohesive soil is:
qr=5s. d. Nc s, +yD
D is the embedment of the footing base and v is the density of the overburden.

Exact values of bearing capacity factor N, for surface footings (zero embedment) from plasticity
analysis:

Strip footing (rough or smooth): Ne=2+m (Prandtl, 1921)
Circular footing (rough): N.=6.05 (Cox et al., 1961)
Circular footing (smooth): N.=5.69 (Cox et al., 1961)

Shape correction factor:

N for a strip should be multiplied by an empirical shape factor, s, for rectangular and square footings.
Eurocode 7 suggests that for a rectangular footing of length L and breadth B:

sc=1+02B/L
Embedment correction factor:

Skempton (1951) proposed empirical curves for the increase in N, with normalised footing embedment
D/B. B is the width of a strip footing, the diameter of a circular footing, or the side length of a square
footing. Note that Skempton’s value of N, at zero embedment for a circular footing slightly exceeds the
exact plasticity solution. Skempton’s curves can be approximated as a depth modification factor, d.:

d.=1+0.33 tan’(D/B)

.
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Empirical correction factors for shallow foundation embedment in cohesive soil (Skempton 1951)
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2.2 Frictional (Coulomb) soil, with friction angle ¢.

The general equation for the bearing capacity, gz, of a shallow foundation on frictional soil is:

qr= SqNg o't 0.5s5,N, v’ B

The bearing capacity factors N and N, account for the strength arising from surcharge and
self-weight of the foundation soil respectively. D is the embedment of the foundation base. v’ is the
effective density of the soil beneath the foundation. ¢’ is the in situ effective stress acting at the level
of the foundation base. B is the footing width.

For a strip footing on weightless soil, the exact solution for N, is:

N, = tan*(n/4 + ¢/2) =% (Prandtl 1921)

An empirical relationship to estimate N, from N, is (Eurocode 7):

N,=2(Ng-1tan¢

Shape correction factors:

Empirical shape factors, s, and s, should be applied for circular and square footings respectively.
Eurocode 7 suggests that for a rectangular footing of length L and breadth B:

Sq=1+@Bsin¢)/L
ss=1-03B/L

For circular footings assume L = B.
Embedment correction factor:
Treat embedment as a surcharge in the N term.

Other empirical relationships for N, are widely used throughout Europe. Refer to Sieffert &
Bay-Gress (2000).

Reference:

Sieffert J-G. & Bay-Gress Ch. 2000. Comparison of European bearing capacity calculation methods for shallow foundations.
Proc. Instn. Civ. Enrs Geotech. Engng. 143 (Apr.) 65-74
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Section 3: Settlement of shallow foundations
3.1 Elastic stress distribution below strip and circular footings

The following closed-form elastic solutions are available for estimating the stress beneath
foundations. They are derived from integration of the Boussinesq solution for a point load on
an elastic half-space. More details can be found in Chapter 3 of ‘Elastic Solutions for Soil and
Rock Mechanics’ by Poulos & Davis (1974).

Suip icading Circuiar loading
i1l nuc‘!nunu
|
|
]
<3
L‘—-ga—-bl 2a: Cv Sy
Srip: oy = %{af-sinu cos{a+28); O = %{a-—sina cos {a + 28)]
Gy = %{a+sina}; Gy = %[a—sinu}
Circie: (centre-iine only) S
) 8.2 S.4 A o g e s 3
3 T
) { 1 2 {2
o= \1+(a/z)z} 1 //
Op = %{(IZJ.’.V)— 2(1+v);€ - 2 74 : / W
L (2 +2%) @2 +22)y"2 L '\/
L/
[ 1

|
&:ﬂ: soess dismibution |
w ceame Of umiorm |

curoutar & STID icaamgs. |
+ 4 1) o. - Circziaricading
h (v = 0.5)
Gv — Stuip lcading
4) oy - |I
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3.2 Elastic solutions for vertical stress below uniform rectangular surface loads

The vertical settlement below a footing can be calculated by integrating the vertical
compression of each sub-surface layer. If the vertical stiffness of each layer is known (or can
be found from the vertical stress level), the settlement of that layer under the action of the
foundation load can be found. The fraction, I, of the applied foundation load, q, which reaches
a depth z below the comer of a rectangular loaded area can be found using Fadum’s chart
(Fadum 1948). This chart is derived from integration of the Boussinesq solution for a point
load on an elastic half-space. Since this is an elastic solution, superposition of multiple
rectangular areas is permitted. Further details are given by Poulos & Davis (1974), pp 54-57.

0.28

L TTTT T
0.26 - Snakiiiden g
nz : q / =
o.24—f'| ; 2.? |
z |
022— 14t : // - ‘
0.20 / -
a, =gl /// 0 é
0.18 7//(4/ :
0.16 //fi 0.6
L 014 /{/// '// 0‘13
YAy
0.12 7 // A y — 0.4
/Y //
0.10 / / //‘/ /V, 03
0.08 // %; s — ;
A !
0.06 V//////V// e 0.2
0.04 /% //1/ /,"/// o
0.02 9,/ i B s e
0 "’4/ 0
0.1 1 10

Vertical stress under the corner of a rectangular area carrying uniform vertical pressure
(after Fadum, 1948, reproduced from Craig, 1996)

References:

Craig R.F. 1992. Soil Mechanics. 5" edition. Chapman & Hall, London

Fadum R.E. 1948. Influence values for estimating stresses in elstic foundations. Proc. 2™ Int. Conf. Soil Mech. & Foundations.
3:77-84

Poulos H.G. & Davis E.H. 1974. Elastic solutions for soil and rock mechanics. Wiley, New York.
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3.3 Elastic solutions for surface settlement
3.3.1 Infinite half-space

The following closed-form elastic solutions can be used to estimate the settlement of a circular
or rectangular footing on an infinite half-space. Further details are given in Poulos & Davis

(1974).
Notation: G shear modulus [ = E /2 (1 + v) where E is Young’s modulus]
q applied vertical stress v Poisson’s ratio
a radius of loaded area L,B foundation length and breadth
Circular Area on Homogeneous Soil
central settlement is wo=(1- v)-‘E Surface settlement profile
2 G a i under point load, Q
edge settlement is w, ==2(1-v) 2
rigid punch (qavg = P/a?) W =2 -V)% | “Rm 26 s

Circular Area on Non-Homogeneous Soil
Consider case where shear modulus varies linearly with depth as G = G + mz:

1) Go=0,v=0S5 w=-2—‘-:; under loaded area of any shape
w=0 outside loaded area.

@ Go>0, central settlement is wo =
2Gg
G, +ma
GO ’, ’ » G ’ / =
1
: I w0t u.n,///
af-----~ \ et s
d
1 0 //
P
' w’n" T w0 0wt ©
z Go/ma
= i -
For v = 0.5, central settlement may be approximated by w, %G, + ma)
Rectangular Area on Homogeneous Soil
corner settlement is Wc=(1’\’)'92%

where:

L/B I LB I LB I L/B I

1 0.561 16 0.698 24 0.822 5 1.052

1.1 0.588 1.7 0.716 2.5 0.835 6 1.110

1.2 0.613 1.8 0.734 3 0.892 7 1.159

1.3 0.636 1.9 0.750 35 0.940 8 1.201

1.4 0.658 20 0.766 4 0.982 9 1.239

1.5 0.679 22 0.795 4.5 1.019 10 1.272

~BL
Rigid rectangle: w, =(1—V)&%a—l,sd where Ipg varies from 0910 0.7 for L/B=1- 10

8
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3.3.2 Layer of finite thickness, immediate (undrained) settlement

The following graphical solution for the average immediate settlement of a uniformly loaded
footing, s;, on a layer of finite thickness was proposed by Christian & Carrier (1978). The
solution is derived by integrating an elastic stress field over the region above bedrock and is for
v= 0.5 (undrained, or immediate settlement). If sub-surface layers of different undrained
stiffness are present, superposition can be used. The component of footing settlement due to an
individual layer can be found by calculating the footing settlement with the bedrock above and
below that layer.

1.0 L = length
g
ey ||
raing 11 e
1o 0.9 . H B~
S~ | V=05
S, = Hotls géB-
0.8
0 5 10 15 20
D8
20 7 uB
|1 10
A e

1.5 = 5
; 3
L]
I 2
Hy 1.0 K 1

g 1.5

05 %/ e Circle

o.o‘-‘l/

0.1 0.2 0.5 1 2 5 10 20 50 100 1000
HB

Average immediate settlement of a uniformly loaded finite thickness layer (after Christian & Carrier, 1978)

Christian J.T & Carrier IIl W.D. 1978. Janbu, Bjerrum and Kjaernli’s chart reinterpreted. Canadian Geotechnical Journal
15:123-128 and 15:436-437

3.3.2 Layer of finite thickness, total (drained) settlement

The following graphical solution for the total settlement af the corner of a uniformly loaded
footing, p;, on a layer of finite thickness was proposed by Meigh (1976). Since it is based on
elastic solutions, superposition is permitted to allow settlement at the centre of a footing to be
found. Solutions for the case of increasing stiffness with depth (k > 0) are included. A
Poisson’s ratio of 0.2 has been used, for drained conditions. The base correction factor, Fpg,
should be applied for rough footings.

Meigh A.C. 1976. The Triassic rocks, with particular reference to predicted and observed performance of some major
foundations. Geotechnique 26(3):391-452
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Infiuence factor, I},

Q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 . 1.0
T I S0
2 ) g J[ L/B = Tae] ":\
DS VI U N N NS N S 0.9 —t
3 e \ \ \ >( E \\ » M(:'lgh
. | \ g oo ,
10 | = 0 2 1 6 3 10
k=10k~=53k=2k=1k=05k=0.125 k=0 D/IB
Influence factor. I},
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 Correction factor, Fy = .?elllemcnl {or rough base
’W: I . é T L0 Settlement for smooth hase
2 /B=2 .
v H 4 N ININTSS =§\ 0.
B & Y NN N - /’
8 \VIAY N 0.8 7
=2
1 | LA N\ <
k=10k=5k=2 k=1 k=05 k=025k=0.125 k=0 .
0.6
Influence factor, I}, 2.5
0 01 02 03 04 05 06 07 - o 0.5 1.0 15 20 25
r— ‘ l ; /’lg 3! HIB
2 N = S
H o4 RN N
F s SAYERN
s \ N ~L
2 AR N
k=10 k=5 k=2 k=1 k=05 k=025 k=0.125 k=0

Influence fector, I},
[¢] 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

BANS | _ b
\ \x k=5 | - 4~ Assumed incompressible
L k=

\
£ R
| N
|

AL\
\V\k

k=10 k=2k=1k=05k=0.125

7

il

=0

Influence factor, [,
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

2 AN L/Hi r!__ Poisson’s ratio = 0.2
\\\ ‘§ PR i \EmE) B
;4 N\ < | Z, 1
4 A/)( N k=025
Bos \ \ \\)(3(\ Settlement at corner of loaded area
<BXI, -
8 \ \\ e B
10 ‘ \ ¢
k=10k=2 k=1k-05 k=0125 k=0 Diagrams applicable for H/B > 10

use for L/iB > 10

Total settlement at the corner of a uniformly loaded finite thickness layer
(after Meigh, 1976, reproduced from Tomlinson, 2001)
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Section 4: Bearing capacity of deep foundations

4.1 Axial capacity in sand
American Petroleum Institute (API) (2000) guidelines for driven piles in sand.
Unit shaft resistance: ts=K 6’y tan 8 < Tg jimit

Closed-ended piles: K=1
Open-ended piles: K =10.8

Soil density | Soil type | Soil-pile friction angle, §  Limiting value, 7t jimi (kPa)
Very loose Sand 15 48
Loose Sand-silt
Medium Silt
Loose Sand 20 67
Medium Sand-silt
Dense Silt
Medium Sand 25 81
Dense Sand-silt
Dense Sand 30 96
Very Dense | Sand-silt
Dense Gravel 35 115
Very Dense | Sand

Unit base resistance: qp = Nq 6’vo < Qb limit

Soil density | Soil type | Bearing capacity factor, N,  Limiting value, qjimis (MPa)
Very loose Sand 8 1.9
Loose Sand-silt
Medium Silt
Loose Sand 12 29
Medium Sand-silt
Dense Silt
Medium Sand 20 4.8
Dense Sand-silt
Dense Sand 40 9.6
Very Dense | Sand-silt
Dense Gravel 50 12
Very Dense | Sand

American Petroleum Institute (API) (2000) RP2A: Recommended practice of planning, designing and constructing fixed
offshore platforms- working stress design, 21* edition, Washington 59-61

11
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Randolph (1985) and Fleming et al’s (1992) tables for base resistance, based on Bolton’s
(1986) correlations for friction angle, combined with Berezantzev’s (1961) relationship
between ¢ and Ng:

ap (MN/m?) ap (MN/m?)
1 3 5 710 20 1 2 3 5 7 10 20 30
10 [5.75 10
\ N \O'A\\
20 20 75
30 \ \ lD:T 30 \ \ID=1
\
f\\ . \Qis\\ N
50 IC NS 50 < \\ N
70 \\\ - S 70 AN \\\ AN
100 1 o 100 \\ N \\
a, 5-252\ \4\\N ] \\\ \\
(kN/m2) i \\ N N \\ N
200 ! ‘ A 200 N N
N INANY
300 \i\\\\ 300 \‘L\
NN A\ N\ Y
500 NN | 500 AN
(@¢,, =27° (b) ¢, = 30°
ap (MN/m2)
1 2 3 5 710 20 30 50
10
o.& \ 2
20 \\ \\Q \
N
30 N
0.2 NI N |
MNANAN Ip=1
S0 AN A A\ \D
70 \ N \\ \\
00 \ N \\
ay 1 P
(kN/m?*) N \
N
200 \\
300 \\ \\
N
500 AN

(c) ¢cv = 33°

Design charts for base resistance in sand
(Randolph 1985, Fleming et al 1992)

Berezantzev V.C., Kristoforov V. & Golubkov V. 1961. Load-bearing capacity and deformation of piled foundations Proc. 5th
Int. Conf. Soil Mechanics & Foundation Engineering, Paris 2:11-12

Bolton M.D. 1986. Strength and Dilatancy of Sands, Geotechnique, Vol. 36, No.1, 65-78, 1986.

Randolph M.F. 1985. Capacity of piles driven into dense sand. Cambridge Univ. Technical Report CUED/D-SOILS TR171
Fleming W.G K., Weltman A.J., Ranolph M.F. & Elson W.K. 1992. Piling Engineering.

12
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4.2 Axial capacity in clay

American Petroleum Institute (API) (2000) guidelines for driven piles in clay.

Unit shaft resistance: Ts = Q. Sy

2 T T T T T 717 T T T T 711
~
\' . ~N
..\ ~
1 ; \. L g ~ ]- i
— ~ * ~g ° a= a7
I~ Ne /f ‘\. " . ~ N 2(Su /O-'vo) ]
0.7 I ~ e -~ - . —
— [ & o ~ - / —
e / . . ~ ¢ ¢~/
% 0.5 p RN w2 / —~ —
W - -
ol ® - ~
M ]. ~ .. [ ! -~ / ® o —~ 4
3 B a= v V2 \. .' \\.\ B
2(5 /o ) i\»\ *~
0.3 “ v — ]
~ ~
—
— _
—~
0.2 +— -~ :
0.1 1 | I N | L1 1 1 11
01 0.2 0.3 0.5 0.7 1 3 5 7 10

Strength ratio, s,/

Shaft friction on driven piles in clay

(Randolph & Murphy, 1985; Fleming et al, 1992; API, 2000)

Unit base resistance: q, = N¢ Sy

N:=09.

Randolph M.F. & Murphy B.S. 1985. Shaft capacity of driven piles in clay. Proc. 17" Annual Offshore Technology

Conference, Houston. 1:371-378
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4.3 Lateral capacity in sand (or n.c. clay)
(linearly increasing lateral resistance with depth)

Lateral soil resistance (force per unit length), P, = nzd
In sand, n = y’K,*
In normally consolidated clay with strength gradient k; s, = kz; n=9k

—

Distribution of lateral resistance

H horizontal load on pile head

M, plastic moment capacity of pile

d pile diameter

L pile length

e load level above pile head (=M/H for H-M pile head loading)
Y effective unit weight

Ko passive earth pressure coefficient, (1+ sin ¢)/(1- sin ¢)

100 E T T ™ T T 7T / 100 l- T //
“ % T estra.med
i ‘ (one hinge) My/nd? 2 z / (two hinges)
10 k | H/nd3
F restrained
[ (no hinge)
H/nd3 | 7 10
I /7
: E e
- 0
X 2
- 4
o1 8 . 1
T 2 1 10 100 1000 -
L/d My/nd*
Short piles Long piles
Lateral pile capacity

(linearly increasing lateral resistance with depth)

14
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4.4 Lateral capacity in uniform clay

Lateral soil resistance (force per unit length), P, increases from 2s,d at surface to 9s,d at 3d
depth then remains constant.

Distribution of lateral resistance

H horizontal load on pile head
M,  plastic moment capacity of pile
d pile diameter
L pile length
e load level above pile head (=M/H for H-M pile head loading)
Su undrained shear strength
100 T T
100 F .
E restrained My/s,d’ 200 restra'med //
[ (one hinge) (two hmges)/
I /7
H/s, d?
10
[ 10
H/s,d? F
1
restrained
(no hinge)
0.1 EEEEE— !
T 2 4 6 810 20 ! 10 100 1000
L/d M,/s,d?
Short piles Long piles

Lateral pile capacity
(in uniform clay)

15



Section 5: Settlement of deep foundations

5.1 Settlement of a rigid pile

P, w

Vertical eq™ on circumferential element
F—>1 = T,\'r;)
I‘U 1 I

v, ]
> Compatibility
-—— L
T odr
f;, rT Gw
l Hence 7,=—— where ¢=Inlr,/r,
T T ¢=nfr, /1)
Vertical eq™ of pile
P\' = Z”FUlTs.uvg
\ Rigid punch
-------- Sl 2ol 4
> p, = (- HG,W,
—>
7y
Shear ) . . Shear
modulus G2~ Gy G Gy modulus

Pile 12 2
/ /
Depth Depth
- (IL g=1 G-"l c_ i
7T =T 776 <TG,
Floating pile End bearing pile

Nomenclature for settlement analysis of single piles
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5.1 Settlement of a rigid pile (continued)

P_P P
— =4
wow, w,
P _4rG, 24G,,
w 1-v ¢
P __4Gn 226G,
wrG, 1-vGr, ¢ G 7
P 4 n 2n I
= ——t p —
Wr, G/ l-v 5 ; T
where n=ryry base enlargement ratio
&= G/Gy base stiffness ratio
P = Ga/Gy soil stiffness gradient
A=Ey/G; pile-soil stiffness ratio
&= In (rn/ro) dimensionless influence zone
and: (= 1n{[0.25 +(2.5p(1-v)- 0.25)§]i}
rO
for &1:

¢ = ln{Z.S o(1 —v)ri}

0

5.2 Settlement of a compressible pile

49 2ztanhyl |
P _=v'7 a ,,

Grw 1 4n tanhud !
1”0 1+ — —_
A (-v) W 7,

where 1 =2/20)"* (Iry)

measure of pile compressibility
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