

ENGINEERING TRIPOS

PART IIB

Wednesday 21 April 2004

2.30 to 4

Module 4F1

CONTROL SYSTEM DESIGN

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Attachment:

Formulae sheet (3 pages).

Supplementary pages:

Two extra copies of Fig. 1 (Question 3).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

- Let S(s) denote the sensitivity function of a feedback system with return ratio L(s). Suppose L(s) is stable, minimum phase and has at least second order roll-off at high frequencies.
 - (a) Show that [25%]

$$\int_0^\infty \ln |S(j\omega)| d\omega = 0.$$

(b) Suppose that $|S(j\omega)| \leq M$ for all ω , where M>1. Give a graphical interpretation of this condition in terms of L(s). Show that the condition guarantees a phase margin of at least:

$$2\sin^{-1}\left(\frac{1}{2M}\right).$$

Can a lower bound on the phase margin be used to determine an upper bound on M?

[25%]

(c) Suppose the following specifications are required:

A:
$$|S(j\omega)| \le 0.1$$
 for $\omega < 1$;

B:
$$|S(j\omega)| \leq M$$
 for all ω ;

C:
$$L(s)$$
 has gain smaller than that of the system $1/(s+1)^2$ for $\omega \ge 10$.

Show that specification C implies that:

$$\int_{10}^{\infty} \ln|S(j\omega)| d\omega < 0.1.$$

[Hint: you may assume that

[25%]

$$\int \ln (1 - (1 + \omega^2)^{-1}) d\omega = \omega \ln (1 - (1 + \omega^2)^{-1}) - 2 \tan^{-1} \omega.$$

(d) Hence find an M_0 so that the specifications in Part (c) are infeasible for $M < M_0$.

[25%]

3

- 2 Let R(s) = N(s)/D(s) be a stable rational transfer function with R(0) = 1, R(1) = 0 and deg(N) < deg(D).
 - (i) By considering the definition of the Laplace transform, or otherwise, show that the output y(t) of R(s) in response to a step input must satisfy:

$$\int_0^\infty y(t)e^{-t}dt = 0.$$

What conclusion can you draw about the necessity of undershoot for such a transfer function?

[20%]

- (ii) Find a condition on $m = \deg(D) \deg(N)$ for the initial slope of the step response of R(s) to be zero. [15%]
- (b) Consider a plant with transfer function

$$\frac{s-1}{s^2-5s+6}.$$

(i) Sketch the root-locus for this plant, and hence show that it can be stabilised by constant gain feedback. Find the range of stabilising gains. [30%]

(ii) Design a control scheme for this plant to achieve internal stability, unity d.c. gain from reference input r(t) to plant output y(t) and zero initial slope of this step response.

[25%]

(iii) Without making any detailed calculations, sketch the form of y(t) in response to a step input at r(t) for your design. [10%]

V.

- Figure 1 is the Bode diagram of a system G(s) for which a feedback compensator K(s) is to be designed. It may be assumed that G(s) is a real-rational transfer function.
- (a) (i) Sketch on a copy of Fig. 1 the expected phase of $G(j\omega)$ if G(s) had no poles or zeros with Re(s)>0;

[10%]

(ii) Explain why the sketch only allows the *least* number of possible right half plane poles of G(s) to be determined. What is this least number?

[20%]

(iii) Comment on any limitations on the achievable crossover frequency that might be faced in a control systems design for this plant.

[10%]

(b) Assume that G(s) has the least number of right half plane poles that you determined in Part (a)(ii). A feedback compensator K(s) is required to provide internal stability of the closed-loop system and a phase margin of at least 50° . Show that this can be achieved using a K(s) with one pole and one zero. Use a Nyquist diagram sketch to justify your conclusion.

[30%]

(c) The compensator obtained in Part (b) is to be modified to achieve the following specification:

A:
$$|S(j\omega)| < 0.2$$
 for all $\omega \le 0.1$ rad/s.

Design a compensator to achieve this while reducing the phase margin as little as possible. Estimate the new phase margin.

[30%]

Two copies of Fig. 1 are provided on separate sheets. These should be handed in with your answers.

Figure 1: Bode diagram of G(s) for Question 3.

W 21

Formulae sheet for Module 4F1: Control System Design

To be available during the examination.

1 Terms

For the standard feedback system shown below, the **Return-Ratio Transfer** Function L(s) is given by

$$L(s) = G(s)K(s),$$

the **Sensitivity Function** S(s) is given by

$$S(s) = \frac{1}{1 + G(s)K(s)}$$

and the Complementary Sensitivity Function T(s) is given by

$$T(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}$$

The closed-loop system is called **Internally Stable** if each of the *four* closed-loop transfer functions

$$\frac{1}{1+G(s)K(s)}, \quad \frac{G(s)K(s)}{1+G(s)K(s)}, \quad \frac{K(s)}{1+G(s)K(s)}, \quad \frac{G(s)}{1+G(s)K(s)}$$

are stable (which is equivalent to S(s) being stable and there being no right half plane pole/zero cancellations between G(s) and K(s)).

A transfer function is called **real-rational** if it can be written as the ratio of two polynomials in s, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

$$K(s) = \alpha \frac{s + \omega_c/\alpha}{s + \omega_c \alpha}, \quad \alpha > 1$$

achieves its maximum phase advance at $\omega = \omega_c$, and satisfies:

$$|K(j\omega_c)| = 1$$
, and $\angle K(j\omega_c) = 2 \arctan \alpha - 90^\circ$.

3 The Bode Gain/Phase Relationship

If

× 148 1

- 1. L(s) is a real-rational function of s,
- 2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and
- 3. satisfies the normalization condition L(0) > 0.

then

$$\angle L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d}{dv} \log |L(j\omega_0 e^v)| \log \coth \frac{|v|}{2} dv$$

Note that

$$\log \coth \frac{|v|}{2} = \log \left| \frac{\omega + \omega_0}{\omega - \omega_0} \right|, \text{ where } \omega = \omega_0 e^v.$$

Figure 1:

If the slope of $L(j\omega)$ is approximately constant for a sufficiently wide range of frequencies around $\omega = \omega_0$ we get the approximate form of the Bode Gain/Phase Relationship

$$\angle L(j\omega_0) pprox rac{\pi}{2} \left. rac{d \log |L(j\omega_0 e^v|)}{dv} \right|_{\omega=\omega_0}.$$

4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in Re(s) > 0, then if $s_0 = \sigma_0 + j\omega_0$ with $\sigma_0 > 0$

$$\log H(s_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sigma_0}{\sigma_0^2 + (\omega - \omega_0)^2} \log H(j\omega) d\omega$$

and

$$\log |H(s_0)| = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta} \log |H(j|s_0|e^v)| dv$$

where $v = \log\left(\frac{\omega}{|s_0|}\right)$ and $\theta = \angle(s_0)$. Note that, if s_0 is real, so $\angle s_0 = 0$, then

$$\frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta} = \frac{1}{\cosh v}.$$

We define

$$P_{\theta}(v) = \frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta}$$

and give graphs of P_{θ} below.

The indefinite integral is given by

$$\int P_{\theta}(v) \, dv = \arctan\left(\frac{\sinh v}{\cos \theta}\right)$$

and

$$\frac{1}{\pi} \int_{-\infty}^{\infty} P_{\theta}(v) \, dv = 1 \quad \text{for all } \theta.$$

G. Vinnicombe M.C. Smith November 2002