ENGINEERING TRIPOS PART IIB

Tuesday 20 April 2004 2.30 to 4

Module 4F10
STATISTICAL PATTERN PROCESSING

Answer not more than two questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

There are no attachments.

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 (a) What is the Bayes’ minimum error rate classification rule for a multi-
class problem? What determines how closely a practical classifier approaches the

Bayes’ minimum error rate?

(b) Class-conditional probability density functions (PDFs) are to be esti-
mated for a supervised training task. A 20 dimensional feature vector is used. The
class-conditional PDF's are thought to be approximately Gaussian distributed and
have class-dependent correlations between the elements of the feature vector. Com-
pare in terms of modelling capabilities, estimation issues, number of parameters, and
computational complexity the use of either a single full covariance Gaussian model,
or a Gaussian mixture model (GMM) with M diagonal covariance components, for

each class-conditional PDF.

(c) What are the advantages of using expectation maximisation (EM) rather

than gradient descent based methods for estimating the parameters of a GMM?

(d) The component priors of a GMM are to be estimated using maximum

likelihood estimation. There are IV independent training vectors x; to Xy.

(i) Write down the log likelihood function, [(f), of a GMM for the

training data.

(ii) Find the partial derivative of [(f) with respect to the prior of compo-
nent m, ¢, in terms of the posterior probability of component occupation

for training vector x, P(m|x).

(iii) Using the method of Lagrange multipliers, find an expression that
must be satisfied for the maximum likelihood values of the component

priors.

(iv) Explain, without derivation, how the formula found in (d)(iii) can be
used to estimate the component priors using the EM algorithm. Assume
that the values of the means and covariance matrices are known, and the

component priors are randomly initialised and appropriately normalised.
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2 (a) A multi-layer perceptron (MLP) is to be used for a classification task.

There are C possible classes. The MLP has a d-dimensional input, an output layer,
L hidden layers, and N®) units in the k% hidden layer.

(b)

(i) What is the purpose of each layer of the MLP? Discuss the issues
that must be considered when selecting the number of network layers and

nodes per layer for a particular problem.

(i) Write down a general expression for the total number of weights
(including biases) in the MLP.

The MLP is to be trained using error-back propagation with a least

squares error criterion. For each input pattern x; the target vector is t(x;). All

nodes use a sigmoid logistic activation function of the form

(c)

(i) Find the differential of this activation function with respect to z in
terms of the output of the activation function. Hence, find the partial
derivative of the output error with respect to a particular weight from

the output of the final hidden layer to the output layer.

(ii) Show how this partial derivative of the error with respect to the
weights can be used in a gradient descent optimisation scheme with learn-
ing rate n to find the weights of the final hidden layer. Describe how 7

should be chosen for fast convergence.

(iii) It is suggested that a momentum term be added to the gradient
descent weight update formula. Explain what a momentum term is and

the effects that it has on the training procedure.

The MLP described in part (b) is to be modified so that the output layer

uses the soft-max activation function. What is the form of the soft-max activation

function? Discuss how the training procedure must be modified to support this

change.
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3 A classifier is required for a two class problem. There are a total of m training

samples x; to x,, with associated labels y; to y,, where y; € {—1,1}.

(a) Initially a linear classifier is to be constructed. Contrast the training
criteria used to train a support vector machine (SVM) classifier and the perceptron
algorithm classifier when the training data is linearly separable. How is the training

criterion for the SVM altered for the case when the training data is not separable?

(b) Discuss how the use of kernel functions may be used to improve the
performance of a SVM classifier. What is the general form for a polynomial kernel-

function?

(c) The training samples are 1-dimensional. The following mapping is pro-

posed from the 1-dimensional input-space to the (2N +1)-dimensional feature-space.

@(x):[% cos(z) cos(2z) ... cos(Nz) sin(z) sin(2z) ... sin(Nz) ]’

where z is the point in the input-space
(i) Show that the kernel-function, the dot-product of two vectors in
the feature-space, between two points z; and z; for this mapping may be

expressed in the following form

_ sin(a(z; — x;))
k(zi, ;) = 2sin(b(z; — x;))

What are the values of @ and b7

(ii) Express the classification rule using the kernel-function in its dual
form which is a function of the support vectors. How does the compu-
tational cost of classification vary as the number of support vectors, S,
number of training samples, m, and N change?

(d) The SVM classifier is to be extended to handle classification problems

with more than two classes. Discuss how the SVM training and classification might

be modified to allow a single SVM classifier to perform multi-class classification.
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4 A Parzen window is to be used to estimate the class-conditional density for a

pattern classification task.

(a) Contrast the use of a Parzen window density estimate with using a sin-
gle multivariate Gaussian distribution as the class-conditional density. You should
comment on memory requirements, computational cost and factors that will affect

the performance.

(b) The form of the Parzen window density estimate p(x) for the the d-

dimensional vector x is given by
. 121 X — X;
P9 =5 20 (55)

where the training data consists of training samples x; to x,,.

(i) Discuss how the value of h affects the Parzen window density esti-

mate. How should the value of h be varied as n changes?

(it) Show that if the window function ¢(x) is a valid probability den-
sity function, then the Parzen window estimate p(x) will also be a valid

probability density function.

(c) For a particular application the data is one dimensional, d = 1, and the

form of the window function is a Gaussian.

(i) By using a first order Taylor series expansion based around ¢(0),

show that the Parzen window estimate p(z) may be approximated as
p(z) = by + bz + bo?

where by, b; and b, are only functions of the training data. What are the

values of by, b; and by?

(ii) Discuss how the use of this approximation affects the memory re-

quirements and computational speed of using the Parzen window.

(iif) What will affect how good this approximation is to the exact Parzen

window density estimate? How could the approximation be improved?
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