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Module 4M13

COMPLEX ANALYSIS AND OPTIMIZATION »
Answer not more than three questions.

The questions may be taken from any section.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
4M13 datasheet (4 pages).

Answers to Sections A and B should be tied together and handed in separately.

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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SECTION A

1 (a) Identify the singularities of the complex function

1

/12
(22 + 1)l sin z

[15%]

(b) Calculate the Laurent expansion of the complex function

14z
flz)===

z7—sinz

about the point z=0 up to the constant term of the series. Hence, deduce the residue at
z=0. [40%]

(c) Sketch the mappings in the complex plane, and label salient points, for:
i) w(z)=z~-1+1;
G) wlz)=lz ;

1

(i11) W(z)=—m .

[45%]
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2 (a) Calculate the following integral using contour integration and the residue
theorem

f ! . [40%]

""4x2 +2x+1

(b) Consider the integral

dx .

_ (! 1
I—j—lJl—x2(1+x2)

(1) By replacing x with the complex variable z and by considering the
contour shown in Figure 1, demonstrate that / = J /2 where

dz .

_ 1
J—§ \/1—22(1+z2)

(i) Hence evaluate J. [60%]

Z - plane

Fig. 1
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SECTION B

3 The efficiency 77 with which a power screw transmits power is, to a good

xy+ i
where 1 is the coefficient of friction between the screw and the object it is driving,
x=tan A, where A is the lead angle of the screw, and y =cosa , where « is the angle

approximation, given by

at which the flanks of the screw thread are inclined.

The lead angle A must be greater than 0°. To allow the use of an adjustable split
nut for wear compensation, & must be at least 15°.

Physically both 4 and & must be less than 90°, but these bounds do not affect the
optimal design of power screws and can therefore be ignored.

(a) Formulate the task of optimizing the efficiency of the screw as a constrained
minimization problem with two control variables, x and y. [15%]

(b) By considering the gradient of the objective function, show that there can be
no unconstrained minimum for this problem, and that the constraint arising from wear
compensation considerations is active at the optimum. [20%]

(c) Estimate, using a Golden Section line search, the value of x (and hence A1)
that optimizes the efficiency of the screw for the case g =0.1. A suitable initial

interval for x is between 0.1 and 2.9, and the search can be halted when the interval has
been reduced four times. [40%]

(d) Find analytically the value of x (and hence A) that optimizes the efficiency
of the screw for the case x4 =0.1, and comment on the performance of the Golden

Section line search.

How does the optimal value of x vary as 4 increases? [25%]
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4 The control system for a nuclear submarine’s reactor consists of n components,
each of which has a failure rate x; (i=1,...,n) and whose cost is C; / x,-2 where each
C; is a known, positive constant. The reliability of the system, operating for a given
length of time 7, is

R(x) = exp[—— Tzn:xi ]

=1

An engineer has been asked to design a minimum cost control system satisfying a
constraint on the reliability, R(x) 2 Ry,.

(a) Explain why the constraint on the reliability must be active at the optimum. [10%)]

(b) Given that the reliability constraint is active, it can be treated as an equality
constraint. Use the Lagrange multiplier method to show that the optimal component
failure rates are given by

_ IR

- S

i

j=1
You may find it helpful to reformulate the constraint equation by taking logarithms. It
is not necessary to check the second-order optimality conditions. [45%]

(¢) In a nuclear submarine space is at a premium. The available technologies
for the components of the control system are such that the volume of the system is

approximately
n
V)= JEV,-x,-z
i=]

If n=2, T=10"hr, V; =V, =6.25x10® mhr?, C;=1x10"® £hr? and
C, =2x107"® £hr™2, by graphically identifying the feasible region, or otherwise, find
the minimum cost control system satisfying the constraints R(x)2=0.9999 and

V(x)<2m?. [45%]

END OF PAPER
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4M13
OPTIMIZATION
DATA SHEET
1. Taylor Series Expansion

For one variable:

F&) = fE)+ =) FE) + 3= FE) +R

For several variables:

fx) = F&) + VFE) (x-x) + %(x ) HE) (x-x") + R

where
|
|ox |
gradient Vf(X) = | : | andhessian H(x) = V(Vf(x)) =
o _
ox,

I

axf o ox, ox,

of I
dx, ox, axnz

H (x*) is a symmetric nxn matrix and R includes all higher order terms.

2. Golden Section Method

f(x) Ax _ d-Ax (a) Evaluate f(x) at points A, B, C and D.

d-Ax  d () If f(B) < f(C), new interval isA—C.

. % = 0382 If f(B) > f(C), new interval is B —D.

If f(B) = f(C), new interval is either

d=1, \ A—CorB—D.
L > % © Evaluate f(x) at new interior point. If
' not converged, go to (b).
Ax Ax
A 5 C i

am1z ' 1

20/10/02
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3. Newton’s Method
(a) Select starting point X,
(b) Determine search direction d, = —H(x,)™! V£(x,)
(c) Determine new estimate X =X 14,

(d) Test for convergence. If not converged, go to step (b)

4. Steepest Descent Method

(a) Select starting point X,
(b) Determine search direction d =-Vf (=) aTa
(c) Perform line search to determine step size o, or evaluate &, = F—I_I%L)d—
: : ' x (X a,
(d) Determine new estimate =X tad,
(e) Test for convergence. If not converged, go to step (b)
5. Conjugate Gradient Method
dono

(@) Selgct starting point x,, and compute d, = ~Vf( X,) and o, = m

(b) Determine new estimate L a=Xtad ° 0o

V£ (x, +1)| g
VFe]

(d) Determine search directiond, ., = — Vi(x.,,) + B4, -

(c) Evaluate Vf(x,,,)and B, = [

T
dy 1 V(X 4)
T
d, . H(x, ) d

(e) Determine step size 0y = -
k+1

(f) Test for convergence. If not converged, go to step (b)

6. Gauss-Newton Method (for Nonlinear Least Squares)

If the minimum squared error of residuals r(x) is sought:

Minimise f(x) = 5'_": 7x) = rx)r(x)

i=1
(a) Select starting point x,,

(b) Determine search direction d, = ~[ J(x,)77(x,) 17" J(x,)Tr(x,)

aMmi3 a ' 2 | | 20/10/02
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vrx)T|  [ox, 7 ox,
where J(X) =

Vrm(x)T or or

(c) Determine new estimate X, ., = X, +d,

(d) Test for convergence. If not converged, go to step (b)

. Lagrange Multipliers
To minimise f(x) subject to m equality constraints ;(x) = 0,1 = 1, ..., m, solve the sys-
tem of simultaneous equations
VF(x*) + [VR(x*) 17A =0 (n equations)
h(x*) =0 (m equations)
where A = [4,,...,4,] T js the vector of Lagrange multipliers and

on,  on|
5'.x—l see E
[Vh(x)1" = I:Vhl(x*) th(x*)] =
ok,  Oh
ox, " odx

. Kuhn-Tucker Multipliers
To minimise f(X) subject to m equality constraints ,(x) = 0,i=1,...,mandp ine;.lual-

ity constraints g(x) < 0,i = 1, ..., p, solve the system of simultaneous equations

VA(x') + [VR(*) 1A + [Ve(x*)]"h =0 (n equations)
h(x*) =0 (m equations)
Vi=1,...,p, K8(x) =0 (pequations)

where A are Lagrange multipliers and p = 0 are the Kuhn-Tucker multipliers.

oaM13 3 . 20/10/02
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9. Penalty & Barrier Functions
To minimise f(xX) subject to p inequality constraints g(x)<0,i=1, , D, define
q(x,p,) = f(X) + p, P(x)
where P(X) is a penalty function, e.g.

p
P(x) = Y (max[0, g(x)])’

i=1

or alternatively
1
q(x,p) = f(x) —?IB(X)

where B(x)' is a barrier function,_ e.g.
« 1
B(x) = Y

= &(®)

Then for successive k = 1,2, ... and p, such that Py >0 and p, ., > p,, solve the prob-
lem

minimise g(x, p,)

AM13 4 4 | 20/10/02



	
	
	
	
	
	
	
	
	
	

