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Module 4A10

FLOW INSTABILITY

Solutions
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question

is indicated in the right margin.
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(@) If fi(co) — 0 then B; = 0 and if f(—00) — 0 then A; = 0. Otherwise f; and f;

would be infinite at these values of z.

Substituting for ¢, and 7 into the first boundary condition gives (at z = 0):

9%1 _
B =G 0s
= —kAelt+ike) = gpoelst+ike) 4 [, (1k)poelst+ika)

= —kA;, = Sno + ’I.kUl’l']o
and substituting for ¢ and 7 into the second boundary condition gives:

d¢pa _ O
=202
= k Bze(st+ikz) — Snoe(st+ikm) + U2(,L-k.)noe(st+ikx))

= sz = 8N + ’LkUzT’o

Eliminating 7 between these two boundary conditions gives:

Al . (S +’LkUl)

By (s+ikUs)
[20%)]

(b)  The pressure has to be calculated in each fluid independently because of the vorticity

concentrated at the interface. The unsteady Bernoulli equation can be used (data sheet):

1 0
% + §|u|2 +9z+ 8—(:? = const.

Furthermore, we eliminate small terms so that the inertial term at z = 0 takes the form:

lu|? = U? + 2Uik f(0)elt+tka)

Hence:

1 ' '

1 _ .
D2 = (poo,2 + §P2U22) - (szz'Lk}Bg + P2970 4+ psz2)e(st+1kz)



At the interface, p; = p,. When there are no perturbations, this means that
| 1
(poo,l + §p1U1) = (poo,2 + §P2U2)
Hence, when there are perturbations, p; = p, requires that:
(p1Urik Ay + p1gno + p15A1) = (p2U2ik By + pagno + p25Ba)
but, from part (a), no(s + tkUs,) = Bk, so:

: : 9(p2 — p1) B2k
A;(Urik = AP FJ2n
P1 1( 1.1, + S) szg(Usz + S) + (s n ’LkUZ)

Hence the other expression for A; /B, which must be satisfied at the interface is:

A _ pp(Unik +5) g9(p2 — p1)k
Bz pl(Ulik + S) pl(s + 'LkUg)(S + ’LkUl)

(c)  Combining these boundary conditions produces the following expression for s/k:

s__pUitpls  [p1pa(Uh —Us)®  g(pz — p1)

k p1+ p2 (p1 + p2)? - k(p2 + p1)

This is unstable when the term inside the square root is positive:

p1p2(Uy — U2)2 > g(p2 — p1)
(o1 + p2)? k(p2 + p1)

which can be expressed in terms of wavenumber:

9(p3 — p3)
(Ur — Us)?p1p2

The flow is always unstable to high &, i.e. to short wavelengths. This is a defect of assuming

k>

an infinitely-thin shear layer. In reality there will be a cut-off wavelength set by the shear

layer thickness.

(d) The flow is unstable at the lip of the loch so waves will be generated in that region.
Away from the lip, waves are neutrally stable. In terms of the above equation, s has zero
real component. This solution corresponds to travelling waves, very similar to waves on
the surface of the sea. Note that this does not mean that waves will be damped in time.
Thus waves will be generated at the lip and will travel out to sea along the interface!. The

oil platform will move up and down accordingly.

These are called gravity waves. A full analysis can be found in Drazin and Reid 2nd edition §44 (shelf-
mark TA.471)

[50%]

[10%]

[20%]



(a) Ring A (inner ring): angular momentum = r;v;6m; kinetic energy = (viom)/2.

Ring B (outer ring): angular momentum = r,v,dm; kinetic energy = (v30m)/2.

(b)  Final velocity of ring A, having moved to the outside = r1v, /7.

Final velocity of ring B, having moved to the inside = v, /7;.

Therefore the final kinetic energy is:

1 riv\2 rova \ 2
_{(_1_1) +(£) }5m
2 T9 T1

(c)  Consider the change in kinetic energy, AK.E., when the fluids swap places. If this

is negative, energy has been released from the mean flow and perturbations may be unsta-

ble. On the other hand, if this is positive, energy is required to swap the rings over and

perturbations will be stable.

AK.E.

1 U1 2 + T9U2 2 9 2 (5

- —_ — ) —vi—-w m
2 T T1 1 2

1 [r3(r3v}) + r3(riv3) — rirjv} — rirfv;
- ) om
2 T{T5

1 (r203(r2 — r2) — r202(r2 — 12

1 5u5(T5 1)221 (s i) m
2 TiT5

1 (r2—r2) (I'2-T1?

1) — 11 (3 1)6m

2| rirg 4m?

The term in braces {} is always positive because 7, > 7. Hence AK.E. will always be

positive, and the flow will therefore always be stable, if ['3 > I'?

(d) Kinetic energy of ring A (inner ring) = (v + u?)dm/2.

Kinetic energy of ring B (outer ring) = (v3 + u2)dm/2.
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[10%]

[10%)

[20%]

[10%]



(¢)  Final azimuthal velocity of ring A = r;v;/r,. Final azimuthal velocity of ring B =
vy /7. Final axial velocity of both rings = (u; + u3)/2 by conservation of axial momen-

tum.

Again, consider the change in kinetic energy, AK.E., when the fluids swap places and
exchange some axial momentum. Note that, in coming to the same axial velocity, the fluids
have released the maximum possible amount of kinetic energy from their axial motion.

This will be the most unstable situation.

1(r2—r2(T2-T2) (ug+uy)?
AKE. = = 2 1 2 1 1 2 2 2
2 { rir2 T 2 Uy Uy g Om
_ 1 rs—ri (T3 -T) - 2uuy + 43 sm
2| rirk 4n? 2
_ 1 -ri@-T) _ (w—w)’
- { N M

Hence the flow will be stable? when:

rs —r3 (I3 —T9) S (ug — uy)?

rir3 4m? 2

The axial velocity difference is always destabilising.

(f)  The blood in main arteries is at the point of transition to turbulence. We are searching
for a mechanism to delay transition. The initial stage of transition to turbulence is the
amplification of small perturbations. We have discovered in part (e) that an axial velocity
difference (i.e. shear) has a destabilising effect but that rotation has a stabilising effect if
I'2 > TI'2. There will always be destabilising shear in an artery. At low Reynolds number,
the flow is stabilised by viscosity. Around transition, however, the destabilising effect of
shear takes over. Another way to stabilise the flow would be to spin the blood near the walls
of the artery. This would delay the transition to turbulence. It could be achieved by etching
helical grooves (rifling) into the walls of the material. Of course, where the rifling suddenly

stops, at the end of the graft, the flow will be less stable and this may cause problems’.

mpjl00l@eng.cam.ac.uk

2 A formal derivation of this result is found in Howard & Gupta (1962) J. Fluid Mech. 14 463 - 476 §2
3For a full review of blood flow in arteries see Ku (1997) Ann. Rev. Fluid Mech. 29 399-434

[40%])

[10%]
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(@ The term proportional to U? is the centrifugal force of the fluid on the pipe. As the
fluid goes round a corner in the pipe (d?Y/dz? # 0) the fluid accelerates. The reactive

force acts at the point of curvature and makes sinuous perturbations more unstable. [10%]

(b)  The term proportional to U is the Coriolis force. As the angle of the pipe changes
in time (d%Y/dtdz # 0) the fluid accelerates. In sinuous oscillations of a pipe, the Coriolis

force is stabilising but is never as stabilising as the centrifugal force is destabilising. [10%]

A further 10% is given for more discussion about these forces, especially if this shows ev-
idence of reading around the subject. Although separated conceptually, these forces both
have the same origin: the acceleration of the fluid within the pipe. This can be read-
ily shown be expanding out the material derivative of the acceleration of a fluid particle:
D?Y/Dt2. In addition, it is simplistic to say that the Coriolis force is stabilising. It is

stabilising for sinuous travelling waves, but in cantilevered pipes it is destabilising. [10%]

(¢) The equation of motion without the Coriolis term reduces to:

o'y 9 %Y
Elb—;‘f + (pA + pAU _T)'éﬁ + (pA+m)

%Y
B =0

Substituting Y = Yye® sin kz reduces the equation to:
EIk* — K*(pA+ pAU? —T) + s*(pA+m) =0

Solving for s gives:

(pA + pAU? — T)k2 — ETk*

=4
° (pA+m)

The pipe is unstable when s has a positive real solution, i.e. when the term in the square
root is positive. This is when:

EIK? —pA+T
>

U2
pA
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It now remains to express k in terms of the length of the pipe. The smallest value of k, given
the boundary conditions is 7/ L, corresponding to the mode shape shown in the diagram.
We ignore the small change in L due to the movement of the pipe (which would be slightly
stabilising). Hence the critical velocity is:

EI(n/L) — (pA=T)
pA

Ui >
and since the pipe is discharging without a nozzle, (pA — T') = 0. [45%]

(d) A mass balance gives pAU = pA.U,, where subscript e denotes exit conditions.
The nozzle halves the flow area so the velocity doubles. Two things happen: the internal
pressure increases and the tension in the pipe increases. These two factors do not cancel
out. A momentum balance (remembering that the atmospheric pressure acts over area A,

not just A.) gives:
PpipeA + pAU? = poym A+ pAUU. + T
= (ppipe - patm.)A —-T = pAU(Ue - U)

= pA —T = pAU?

Therefore the velocity at which the pipe will buckle divides by /2:

1 EI(r/L)?
2 — ————————————
Ucrit > 9 pA

[25%]
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(@)  One side of the boat catches the wind slightly, giving it a sideways force. The boat
starts to move in this sideways direction. To start with, the mooring rope gives no sideways
force. The aerodynamic centre is upstream of the centre of mass, causing the boat to rotate
such that more of that side of the boat catches the wind. The aerodynamic force increases.
This continues until the boat has moved some distance to the side. Eventually, the force
from the mooring rope starts to pull the front of the boat back towards the centreline. The
centre of mass continues to move in the original direction, so the boat starts rotates in the
opposite direction. Eventually, it presents the other side to the wind and the process repeats

itself. This motion can be seen on boats in harbours, with a period of around a minute. [20%]

(b)  Substituting for y and 0 into the equations of motion gives:

ms*Yy + S,5%0p + kYy = —qb,
Is%0y + s,Yps? = —qcgbo

which can be expressed as:

ms?+k Sys’+q)\ (Yo _0
Szs? I 4qce) \O)

[20%]
(c)  This will have non-trivial solutions when the determinant is zero:
(ms®* 4+ k)(Is® + qcg) — Sp5%(Sz8% +q) =0
= (mI —S2)s* + (kI + qme, — S2q)s® + g,k =0
Hence
Co = (mI-S?%
Cy = (kI+ gme, — S:q)
C4 = qcak
[10%]
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Co = (mI-82) =58

C, = kI—mq(%—Ca> = kI —mqL

Cy = qcik

where L (positive) is the distance between the aecrodynamic centre and the centre of mass.

Co, and Cj are positive. C; can be positive or negative. Solving for s gives:

1/2
c,  [cz 40,0,
=+ (-
s ( 20, © 4C2 )

If C, is positive and C2 > 4C,C} then s is pure imaginary and the situation is stable. (The
system supports oscillations but their amplitude does not increase in time and, were we to
include damping, they would die away). If C: is positive then s only has a real component
when C? < 4C,Cy, which is one condition for instability. If C, is negative, we have a

second condition for instability. [20%]
(€) When (kI —mgqlL) is positive, the system is unstable if:

4CoCy > C?
= 352qcek > (kI —mqL)?

1. 9C] 2 o 2(kI-mgqL)?
= 2pC da |0U > cok

Increasing L, the distance between the aerodynamic centre and the centre of mass, makes

the situation less stable. The system is also unstable when kI < gmL, which reduces to:

1 0Cg kI
Zpc === U?>
27 Ba |, ~ mL

Again, increasing L makes the situation less stable. [20%]

()  In a more detailed analysis, one should take into account:

e the added mass and added moment of inertia of the submerged portion of the boat;

e wave radiation, which will act as added damping. [10%]
0

END OF PAPER
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