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(a)  The need for Quantum Mechanics arose around the tum of the 20® century,
spurred on by a number of experimental irregularities. For instance, on the basis of the
understanding of nature at the time, the very cxistence of atoms was puzzling. It was known
that atoms consisted of negatively charged electrons “orbiting™ positively charged nuclei.
From conventional clectromagnetism, we know that any accelerating charged particle will
emit electromagnetic radiation, and hence lose energy. Therefore, if an electron orbits a
nucleus, by the very fact that it is moving around the nucleus, it must be undergoing
acceleration. One would cxpect then, that it would radiate, lose energy and spiral into the
nucleus. This clearly doesn’t happen, 30 a theory was needed to explain why not.

Another problem was the phenomenon of photoemission. This is the effect
whereby electromagnetic radiation incident on a metal surface causes electrons to be ejected
from it. It was obscrved that clectrons are oaly cjected once the frequency of the light
reaches some threshold value, their energy scales linearly with increasing frequency, and the
number of electrons ¢jected increases as the intensity of light increases. This is at odds with
classical electromagnetism which predicts that (i) the frequency should not make any
difference whatsoever and (ii) the energy of the ejected electrons should only depend on the
intensity of light (Encrgy per unit volume of light is Y:sE? , and Intensity is cnergy per unit
area). There is no reason classicaily for the number of electrons ejected to depend on
intensity. The explanation for this effect within the framework of Quantum mechanics is that
light consists not only of waves, but also of particles called photons, which contain distinct
amounts of energy, depending linearly on the frequency. The proportionality constant is
Planck's constant, h. Electrons are bound to the metal by an energy called the work function,
and until the frequency of light is high enough, individual photons don't have enough energy
to free them. Above this threshold frequency then, electrons are emitted, and the excess
cnergy is taken up as the electron’s kinetic energy. The number of electrons ejected then
scales as the number of photons, which depends on the intensity.

Another turning point was the observation of electron diffraction — clear

evidence that particles have a wave-like character.

Other experimental cvidence was for instance the inability of Physics to explain
(i) why some materials are conductors and others insulators; (ii) the origin of electrical
resistance; (iii) the observed dependence of specific heat on temperature and (iv) the origin of
discrete spectra from heated materials, ¢.g the sun.

(b) Wave-packets are used to represent particles, eg. Electrons.



To construct a wave-packet, add two sinewaves:

E = Eq{Cos{wt-kx) + Cos(mpt-kyx)}
This can be re-wnitienas  E = 2Epsin{at ~ kex)os{w.t — k.x)

Where o, = (@  02)/2 and k, = (k £ k)2

This represents a sincwave of frequency o. which has it’s amplitude modulated at the

frequency ®., to produce beats. This therefore exhibits localised areas of enhanced field

strength which may be used to represent particles. These localised areas (which we call

wave-packets) propagate through space at the group velacity 8av/8k = ¢ (the speed of light).

In the absence of dispersion, these wave-packets will propagate without changing shape, but

if there is dispersion, they will spread out.
The phase velocity is w/k = w2’k = ¢. The group velocity can in principle vary, but
up to a maximum limit of c. We could refine the wave-packet by summing together

an infinite number of sinewaves, with for eg a Gaussian spectral function. This will
increase the localisation.

(c) Construct a wave-packet as follows generally:
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where f{k) is the spectral function, which is given here as being a gaussian of width &
r
fk)= 7——'9 @
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Thercfore, we can write (1) as J“"" I

Where we have uscd the relation that o = ck.

This is known as a Gaussian Intcgral, and the casiest way to solve is to change the variables
10 be more manageable: let x-ct -> x', k-ibv2a ->k’, where a = 1/26? and b = x-ct. This gives
us
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The integral is just cqual to (n/a)
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The net result then is that £ = £, vrge



(d) Heisenberg’s uncertainty principle states that AxAp > g To see where this

comes from, consider the following:

The spectral function has a width Ak = 3. By inspection, the solution for E(x) has a
width Ax = 1/8. Therefore, AxAk = 1. Given that momentum, p = hk, it follows that AxAp =
h. This is just a lower bound on the uncertainty, hence the inequality in Heisenberg’s
uncertainty principle. What this is saying is that we can never simultaneously know
absolutely both the position and momentum of a particle, and the more accurately we know
one, the less we can know about the other.



2.

(a) Schrodinger’s equation can be written in the regions to the left and right of the
step as
(-h*2md*/6x%) Pi(x) = E¥i(x) Region I
(-h*2mé*/x* + V) P(x) = E¥i(x) Region II

The solutions to these equations are:

Wi(x) = A" + Bie™ where k; = —“zhmE

1/ 2 iV -F ’
and WYi(x) = Are™®* where k, = —mh—————~

Matching the wave-functions and their first derivatives at the boundary (x = 0) yields
the following relationships:

A+B=A;

ikjA; - ik;B; = -kpA;

i.e. Bi/A) = -(ka+ik))/(kz-ik;)

Reflection probability = [By/A,* = 1 identically.

(b) Probability density is defined as |l// (x.1) * . This is the probability of finding the

particle at position x, at time .

Probability density:

L

x=0 X
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. 2mE
Pi(x) = A" + Bie™ ™ where kg = =,

Py(x) = Ae'® + Be™* where k, = ¥"=2
h

¥m(x) = Ase™™ where k; = kq

Probability density:

v

x=0 X= X

If we say that the amplitude of the incident wave is 1, then the wave-function in the
barrier region is:

_ kx
Yu=¢€ 2
Therefore, the probability density, T at x=d is € k2 Taking the log of both sides
gives InT = -2k,d => d = -InT/(2k,) = 0( zéi‘;;—;%’j/{
For the situation shown here, AT = T7e™=

Assumptions: (i) only an exponentially decaying term in barrier, (ii) effective mass of
electron in each region is the same

To improve precision, would include full form of yy, and would determine
transmission probability for entire structure.

(d) This phenomenon is called Tunneling. It is manifest in the following situations:
(1) a-decay of nuclei, (2) STM, (3) tunnelling diode, (4) gate oxide of transistors.



(a) This is a resonant tunnelling diode.
When a voltage is applied, the entire potential profile becomes sloped, and the Fermi
Energy on the left approaches bound state E;.

_— bV

(b) As V is increased, the bound state energy E, starts below Eg, then when V is
large enough they coincide, causing a peak in T. As V is further increased,
there is no longer a match between E; and Eg, and T starts dropping. As we
continue to increase V, E; starts to coincide with Ey, and we get another peak
in T. further increasing V will cause T to drop again, and eventually Thermal
current will start to dominate and the conventional exponential increase in
current with applied voltage for a diode will be observed.
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(d) If we had two wells close together, the tails of the bound state wave-functions
would start to overlap, which would cause E; and E; each to split into two
closely spaced levels, in accordance with the Pauli exclusion principle. This
structure can contain a maximum of 8 electrons (4 levels, 2 possible values of
electron spin).

i) If we add more wells, then E; and E; will split further, and for n
wells, they will split into n closely spaced levels. This is the origin
of band structure, where instead of potential wells we have atoms,
and there are so many atoms in a piece of bulk material that the n
sublevels are too close together to be seen as distinguishable.

(ii)  As we change the spacing between the wells, the sublevel spacing
will change. The closer the wells are together, the larger this
spacing:




(a) Schrodinger's equation: -(W/2m)@W/ax® + Vy = EY
The form of V is V(x) = 14kx? = Ymex®

Therefore, -(W2m)dP¢roxt + imax’y = By

If we change variables to let y = (ma/h)®*x, and o = 2E/h@, we can re-write the above
equation as:

Py +(a-yW =0
as required.

(b) Starting with the equation from above, i.e.

Fvioy' +(@-yW =0
If we say that ¥(y) = F(y)e ™ we get

F"-2yF"+(a-1)F=0
If we assume that F(y) is a power series, i.c.

F=Ya,y’
p=l}

F=3 pa,y” and  F'=3 p(p-Da,y"’
- #=0

Now, y can never have a negative power, as then the solution would have a singularity aty =
0. therefore, in the expansion for F'* we can let p -> p+2. That then gives us the following:

0

Z[(P+2)(p+l)ap+2 -'(21)+l—-a)apbp =0
p=0



For a non-trivial solution then, we must have:

ap+2 _ (2p+l-a)

ap [(p+1)p+2)]

Now, this series essentially goes as 1/p, the sum of which diverges to infinity. Therefore, we
must artificially truncate the power series at some value of p, say n. Because a, is related to
ag+2, We can split the solution into two power series, onc with even and the other with odd
powers of y. Depending on whether n is even or 0dd, we then set the other power series
equal to zero, so in other words, the solution is truncated at some value of p which we call n,
and if n is even the serics only contains even terms, and if n is odd, it only contains odd
terms. Then that gives us the following relationship:

Zn+l-a=0
which means o = 2n + 1. But, 3 = 2E/h@ which means :

E, = (n + '4)ho, as required.

Only discrete values of energy are allowed as this is a quantum system which has
modes. If we visualise the potential profile of a QSHO, it is a parabolic well, so only
those quantum states whose wavelength is a half-integer divisor of the well length are
allowed. This is not a discrepancy with classical mechanics, as for highly excited
states, the Quantum and classical theories converge.

©

The solid curve is the Quantum probability density, and the dotted curve is the
classically predicted one. They clearly predict the opposite behaviour: Quantum
Mechanically, the ground state oscillator is most likely to be found at the centre
position, whereas classically it is most likely to be found at the extremes.

(d) The QSHO is relevant for describing the vibration of atoms and molecules, and
can be used to explain the temperature dependence of (i) specific heat and (ii)
resistance of materials.
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semiconductors of different band-gaps in multiplayer structures in order to create specific
potential encrgy profiles, e.g a quantum well or a resonant tunnelling diode.

(b)

Consider what happens when we take a piece of GaAs and dope it on one side
to make AlGaAs, which will be n-type. Duc to the band offset (GaAs has a lower band-gap
than AlGaAs), some electrons will flow from the n-type material into the GaAs. The AlGaAs
and GaAs will then develop a slight positive and negative charge, respectively. This sets up a

dipole layer of charge, and causes the bands to bend.

i.e. Conduction bands before contact:

AlGaAs

In contact:
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Few nm

The 2-DEG is different in terms of its density of states:

3D Q2D
E? const.
n(E) n(E) —
E E
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Electrons in a 2-DEG are confined in one direction (z), and free to move in the
other two (x, y). To be genenal,.
E = Eagusy ™ Ea + A%72m + Mk, 2m

Where the E,, are the discrete energy cigenvalues of the potential well. For most purposes,
the triangular well can be approximated as a square well. The x, y components of energy are
continuous, but the E, are discrete, meaning that rather than have just one free electron
parabola in the E-k diagram, we in fact have a number of sub-bands (as many as there are
discrete states in the potential well). The form is like:

&)
=123.
" f tLd E,

(c) Assume that well is infinitely deep (assumption 1) and square (assumption 2).
Therefore, we can write energy eigenvalues as :

h2n2
lZ

E = where 1 is the width of the well, and m is the electron mass within

8m
the well.

For the Valence band, then, E; = 0.05 eV, and for the Conduction band E.; = 0.25

eV

= emission wavelength of laser =1.2eV +0.05eV +0.25eV =1.5¢V.

2 1.5eV=24x10"J=hc/A => A =825 nm. The accuracy of this answer
depends on the depth of the potential well, i.e. can we assume that it is
infinitely deep? In reality, the well is probably 1-2 eV deep, so an energy
level of 0.25 eV is relatively far below that, meaning the accuracy will be in
the 10-20% range. In order to improve on the accuracy, we should calculate
the bound state energies of the finite well.

(d) If we were to use a Quantum dot, the spread in laser wavelengths would be

much smaller — it would be closer to monochromatic. Also, the threshold current
would be lower.
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