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DIGITAL FILTERS AND SPECTRUM ESTIMATION - WORKED
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1 Let {z(n)} be asequence of independent and identically distributed symbols
such that
Pr{z(n) =1} =Pr{z(n) = -1} = 0.5.

These symbols are transmitted through a communication channel and one observes

L-1
y(n) =) az(n—k)+v(n)

=0
where {v(n)} is zero-mean white noise of variance E (v2(n)) = o2 and is
statistically independent of {z(n)} .
(a) Determine the Wiener filter hgpt which minimizes
2
s @) =5 { (2 - Wy )’} )

where
y(n)=(ym) y(n+1) - y(n+M-1)T
as a function of
R=E[y(m)y" (),
p=E[y(n)z(n)].

Compute R and p explicitly.

Answer. We have
5 0) = { (20) - by ()}
=E{s*(n)} - 20"E{(= (n)y )} +b"E{y (0} y (0)" } .
By taking the derivative with respect to h, we obtain

hopt (M)=E {y (m)y ()7}~ E{(z (n)y (m))}

= R'—lp
We also have
L-1
E[y(n)z(n)] = Z arElz(n—k)z(n)]+ Ev(n)z(n)] = o
k=0

(cont.



as
Elz(n—-k)z(n)] =4d(k).
Similarly
L-1
Ey(n+1)z(m)] =Y xElz(n+1-k)zm)+Epn+1zm)]=a
k=0

and one can show

op ifk<L-1,
0 otherwise.

E[y(n+k)$(n)]={

We also have

E(y(n+m)y(n+1))
L-1L-1 -
= Z'ZE((akz(n+m—k)+v(n+m)) (ajz(n+1-3)+v(n+1)))
k=0 j=0
L-1L-1 R
= E ZakajE(a:(n+m—k)a:(n+l——j))+a.,2,5('m.—l)
k=0 j=0
L-1L-1

=ZZakaj(S(m—lc—-l+j)+a,2,6(m—l).
k=0 j=0

as

E(z(n+m-k)z(n+l-j)=0(m—-k—-1+3j)

(b) The value J (hgpt) is actually a function of the length M of the Wiener

filter. Without any calculation, explain why there exists a value K such that this
function is constant for M > K . What is the value of K7 [25%]

Answer. As a function of M, J (hopt) is constant and reaches its

minimum for M > L. This simply follows from the fact that the observations

(y(n+L),yn+L+1),y(n+L+2)---)

are statistically independent of z (n). So if one increases the channel length, no

further information about z(n) can be gathered.

(CONTINUED OVER.
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(c) In practical situations, the Wiener filter cannot be computed as it relies
on the coefficients {ar} and 63 which are unknown quantities. Using a training
sequence of symbols {z (n)}, describe how you would apply the LMS algorithm
in this context to approximate the Wiener filter. What are the advantages and
disadvantages of such an approach? '

Answer. In practice, one uses a training sequence known to the receiver.

Then the LMS algorithm is used to approximate the Wiener filter with y (n) as.

an input and z (n) as the reference signal. The advantages of such an approach
are that the calculations can be performed online, {a;} and 012, do not need to
be known and the algorithm can adapt itself to a non-stationary environment. The
main drawback of this approach is that it is bandwidth consuming as it is necessary
to transmit a training sequence.

[25%)
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2 (a) Consider the following signals

L-tap FIR Filter u(n) = Y F_3 frw (n — k)
2—tap IIR Filter u(n) =au(n - 1) +w(n)

where |a| <1 and {w(n)} is zero-mean white noise of variance E (w? (n)) = o2.

If these signals are the input to an LMS filter of length L , what is the

stability limit on the stepsize u given by (ME {u? (n)})_1 for these two signals?
[30%)

Answer. In both cases, we need to compute E {u? (n)} . For the FIR

filter, we have

-1 2]
E {'u.2 (n)} —E (Z Bew (n— k))

k=0

L-1
=Y gE{u?(n- K}

k=0
L-1
k=0

For the IIR filter, we have

u? (n) = (au(n—1) +w(n))?
=a2u?(n—1)+w?(n)+20u(n—1)w(n).

Thus it follows that
2

E(u2(n)) -

l-a

(b) Let {u(n)} be a zero-mean input signal and {d(n)} be a reference
signal. Consider the following recursive algorithm

h(n)=(01-py)h(n-1)+ pu(n)e(n) (2)

where

e(n)=d(n) —hT (n-1)u(n)

(CONTINUED OVER.
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with v >0, u(n)=(@@®) v(n-1)--- u(n—- M+ 1))T and
h(n)=(h(n) h(n—1)--- h(n— M +1))T.

Assuming the expectation of h(n), denoted E[h(n)], converges
towards a limit h, determine this limit by making the following standard
approximation

E [u (n)uT (n)h (n— 1)] ~E [u (n) uT (n)] Eh(n-1)]. (3)
Express the result as a function of
R=F [u (n)uT (n)] ,
p=E[u(n)d(n)].

[40%)]

Answer. Clearly one has
Eh(@)]=1-m)EMh{n-1)]+pEa(n)e(n)]
= (1 - ) Elb(n = 1))+ wE[u(n) d(n)] - 4E [u(m)u ()b (n — 1)]
~ (1-p7) Ef(n— 1]+ pElu(n) d ()] - #E [u(m) " ()] E[b(n - 1)].

If there is a limit, it satisfies
h=(1- py) h+pp — pRh.
Thus it follows that

h=(yI+R)'p(n).

(c) An approximate analysis of the recursion (2) shows that it is numerically
stable if

p< ——
Amax + ¥

where Amax is the largest eigenvalue of R . In practice this eigenvalue cannot be
computed exactly. Propose and justify an alternative criterion based on FE {u2 (n)}
ensuring stability of (2). How would you approximate E {u?(n)} in a real-world
scenario? [30%]

(cont.



Answer. We have

A M
trace R= Z A

=1
= ME {u2 (n)} -

< MMAnmax.

So we can use

ps ME {u2(n)} +~

E {u2 (n)} can be approximated numerically by averaging the signal {u(n)} over
a moving window.

3 (a) The periodogram estimate for power spectrum estimation is defined as

N-1
Sx(@T)= Y Rxxlke T
k=—(N-1)

Discuss briefly the properties of the periodogram, including bias, variance, frequency
resolution and computation.

Show that when the biased estimator for autocorrelation is applied, the
periodogram can be determined directly from the DTFT of a windowed version of
the original data,

Sx(eT) = < |Xu (T
where Xy (e/“T) should be carefully defined.

Answer: Periodogram is biased, but asymptotically unbiased. The
variance can be very high for random signals and doesn’t necessarily improve with
data length. Frequency resolution determined by data length, computation usually
efficiently carried out using FFT.

To see this, rewrite the biased estimate as:

. 1 N-1-k
Rxx[k] = < > TnTnik
n=0
1 o0
= YV— Z Un Upyk
n=-—00

(CONTINUED OVER.

(50%)



8

where v, = wpzy is a version of T, truncated by multiplication with a rectangular

window:
1, n=01..,N-1
Wn =
0, otherwise
Now, letting n’ = —n and up = v_p (time-reversal), we have:
Rxxlk] = N Z V_n! Y(~n'+k)
1 1
N Z Up! Vp—n! = Uk * Uk

n'=—o0

i.e. astandard discrete time convolution of u; with vy . Taking the DTF'T of both
sides we get (by the discrete time convolution theorem): -

8x(eT) = ZUET)V(T)

where:
) +00 ) (N-1) '
n=—0oo n=0
—_ Xw(eij)
and

U(erT)_ Z Une —jnwT _ Zx e —jnwT

n=-00 n=0
N-1 ) )

= Y anetImT = Xi(eT)
n=0

where X, is the DTFT of the windowed signal z,wy, .
Hence

~

Sx(eT) = SU(ET)V(T)

- —I-X* () Xu(eT) = T Xu(@ T2

(cont.
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(b) A moving average random process is defined as:
znp = 0.9e, + 0.1e,-1

where e, is white noise having unity variance. Determine the power spectrum of
this process and sketch it over the normalised frequency range 0 to 2w .

The biased method of autocorrelation estimation is employed. Show that
the expected value of the corresponding periodogram estimate of the power spectrum
is given by
N -1

N

Is the periodogram estimate biased for this MA process? Is it biased asymptotically

S X(eJ“’T) =0.82+0.18 cos(wT)

(ie. as the data size becomes very large)? You should carefully explain your answer

[50%)]
Answer:

Autocorrelation function:
Rx x[l] = E[znTy 1] = 0.826; 4+ 0.090; 1 + 0.095; 3

since Elenen+m] = 0m .

Therefore power spectrum is given by:

Sx (e3“T) = 0.82 + 0.18 cos(wT)

Consider the periodogram:
N i 1 .
Sx (€T) = HiXuw(eT)

, N-1 _
= 2 ane TP

n=0
| V-1 ' N-1 _
= N( Z $n1€—]“’"1T)( Z Tny gtiwnaT)
ny=0 n9=0
1 N-1N-1 )
= ]_V_( Z Z xnlxnzeﬂw(nl—nz)T)
n1=0n9=0

(CONTINUED OVER.
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and taking expectations
N-1N-1

E[Sx (7)) = %( > > Rxx(ng - ny)eJw(m—n2)T)
n1=0n9=0 .
=082+ o.oglIG—le‘f“T + 0.09-N—1;1e+f“'-"
~ 0824018 lcos(wT)

Hence biased, since E[Sx(e/“T)] # Sx(e/T) . However, asymptotically unbiased
since (N—-1)/N —-1 as N—oco.
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4 (a) An ARMA model has the following difference equation:

P Q
Ip = — Zapxn-—p + quw-n—q
p=1 q=0

Discuss how the ARMA model can be used for power spectrum
estimation. You should include the formula for the power spectrum of the ARMA
model, as well as a discussion of its advantages/disadvantages compared with non- 4
parametric procedures. : [35%)]

Answer: Bookwork, taken from: ,

ARMA Models A quite general representation is the autoregressive
moving-average (ARMA) model:

eThe ARMA(P,Q) model difference equation representation is:

P Q
p=1 ’ q=0 : ’

where:

ap are the AR parameters,
by are the MA parameters
and {W,} is a zero-mean stationary white noise process with unit

variance, 012,, =1.

oClearly the ARMA model is a pole-zero IIR filter-based model with
transfer function

-2
where:
P Q
A(z) =1+ Z apz™?, B(z)= Z bgz 4
p=1 g=

eUnless otherwise stated we will always assume that the filter is stable, i.e.
the poles (solutions of A(z) = 0) all lie within the unit circle (we say in
this case that A(z) is minimum phase). Otherwise the autocorrelation
function is undefined and the process is technically non-stationary.

(CONTINUED OVER.
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eHence the power spectrum of the ARMA process is:

|B(e™T)|?

Sx(h) = Ty

Thus, estimate the parameters a and b from the data, then plug into
spectral density formula.

The ARMA model is quite a flexible and general way to model a
stationary random process:

eThe poles model well the peaks in the spectrum (sharper peaks implies
poles closer to the unit circle)

oThe zeros model troughs in the spectrum

eComplex spectra can be approximated well by large model orders P and

Q

Can give improved variance of estimation; however, may be highly biased
and inaccurate when an ARMA model is inappropriate for the data. Also, quite
expensive to compute parameters accurately.

(b) Show that the ARMA model autocorrelation function obeys the following
difference equation

P

e ifr<@
Rxxlrl+) apRxxlr—pl = ,
=1 0, ifr>Q
where:
Q
or =D bghg-r
q=r
and hy, is the impulse response of the corresponding IIR filter. (35%)

Answer:

Autocorrelation function for ARMA Model The autocorrelation function
Rxx|r] for the output z, of the ARMA model is:

Rxx[r] = ElznTnir]

(cont.
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Substituting for zn4r from equation 4 gives:

P Q
p=1 - q=0
P Q
p=1 q=0

The white noise process {Wy} is wide-sense stationary so that {X,}
is also wide-sense stationary provided the the ARMA filter is stable. Therefore:

P Q
Rxx[rl=-)_ apRxx[r—pl+ ) bg Rxwlr —d )
p=l1 =0

Note that the auto-correlation and cross-correlation satisfy the same
ARMA system difference equation as z, and wp .

The cross-correlation term Rxw[] can be obtained as follows. Let the
system impulse response be hy, , then:

0o
Tn = E hm wn—m

m=00

Therefore,

E [.‘L'n wn+k] =F [wn+k Z hm 'w'n—m]

m=00

Rxw(k] = Z him Elwy+ Wn—m)

m=—00
Now the noise is a zero-mean stationary white process so that:

2 .

o ifm=—k
E['w'n+k w‘n—m] = w
0 otherwise

(CONTINUED OVER.
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and G%V =1 without loss of generality. Hence,

Rxwlk] = h_g

Substituting this expression for Rxw[k] into equation 5 gives the Yule-
Walker Equation for an ARMA process,

P Q
Rxx[r]=- Z ap Rxx[r —pl+)_ bghg—r (6)
p=1 g=0

Since the system is causal, equation 6 may be rewritten as:

P

p=1

where:

(8)

,orz Z?:rbqhq—r fr<@
0 ifr>@Q

(c) Four values from the autocorrelation function of an ARMA model with
P=2 and Q=1 are given by

Rxx[0] =184, Rxx[1]=1.32, Rxx[2] =0.75, Rxx|[3]=0.47

Use the result of part b) to set up and solve the equations for the AR coefficients
a1 and a2 in this ARMA model.

Answer: We can use the above result for r = 2,3 to formulate a pair of
simultaneous equations involving only the AR parameters:

P

Rxx[r]+) apRxxlr—p] =0, r=2,3
p=1

Solving these we get:

a; =0.33, ap =0.17

END OF PAPER

Rxxlrl=-)_apRxx[r—pl+ecr N

[30%)



	
	
	
	
	
	
	
	
	
	
	
	
	
	

