200511B 4F8 DrN G Kingsbury ngk@eng.cam.ac.uk

Module 4F8, April 2005 - IMAGE PROCESSING AND IMAGE
CODING - Solutions

1 (a) Sampled Spectrum
Consider the sampling grid shown here:
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The sampling function for this grid is clearly

3("1,'&2) = Z Z 5(“1 —mAy,uy — nzAz)

n1=—00 N2=—00

The sampled image gs(u;, u2) can then be written as

gs(ul, Uz) = S(Ul, Uz) 9(“1, U2)

Because s(u1, uz) is periodic, we can write it in terms of a Fourier series and using this we
arrive at the following result: the fourier transform of g,(u,, u2) is Gs(w;, w2) where

1 o0 oo
Gs(w17w2) = Al AZ Z Z G(wl —Plgl,WZ - p292)
p

1=—00 p2=—00

Q; = gAZ’T,z’ = 1, 2. [There is no need to prove this, the question only asks you to write it
down].

We can see from this expression that the FT of the sampled signal (up to a scale factor) is
the spectrum of the original signal reproduced at each grid point.
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It can be seen in left of the above figure that if the image is spatially bandlimited to (5,
in the u; direction and (2p, in the u, direction, then the original continuous image can be
recovered from the sampled image by ideal low-pass filtering at Qp;, {25, , provided that
the samples are taken such that Qp; < 1Q; and Qps < 1, so that the periodic repeats
of the spectrum do not overlap.

This can also be written as:
2r
9 = — 22
1 A > B1
27
Q = —
2 A, > 202

2Q)g; and 2Q) g, are known as the 2D Nyquist frequencies. Thus the 2-D sampling theorem
states that a bandlimited image sampled at or above its u; and us Nyquist rates can be
recovered without error by low-pass filtering the sampled spectrum. If we sample below
the Nyquist rates, as in the right of the above figure, the spectrum will display aliasing
which, as in the 1D case, occurs when we have overlap of the repeated unsampled spectra
in the frequency plane. If aliasing occurs we are not able to recover the true spectrum
without error.

[25%]



(b) Hexagonal sampling
By inspection, the sampling function, s;, for the grid marked by squares is given by

00

s1(u1, uz) = Z z 0(ur — m Ay, ug — nzAz)

ni=—0o0 nNg——00
where A; = 2s and Ay = /3s.

Similarly, the sampling function, ss, for the grid marked by circles can be seen to be

sa(un,u) = Y D 8(ur — [+ §JA, up — [y + 3]1As)
where Al = sand 52 = +/3s.

Writing s; and s» as fourier series we have

00 00
31(’&1, u2) = Z Z ¢ (Pl,Pz) ej(p191‘ul+pzﬂzu2)

P1=—00 p2=—00

and . .
S2 (ula ’ll,2) = Z Z Co (pl R p2) ej(Plﬁlul +p2flzu2)

P1=—00 p2=—00

where: 9 5
~ T =~ 7
H=—, W=-— and O =——, Q==
A ? AV ! A 2 A,

c1 and ¢, are given, so we can write the sampled function g,(u1, u2) as

o0 oo
ge(w,u) = D Y glur,uw)alp,p) eI P tpafizns)

P1=—00 p2=—00

+ g(uh ’U,2) Cz(pl’ p2) ei(p1ﬁ1"1+p2ﬁzu2)

and therefore, using the shift theorem, the FT of g as

Gy(wi,wa) = ) Y alpy,p) Gwr — pr, wy — o)
P1=—00 p3=—00

+ c2(p1,p2) G(wy — leh wg — szz)

Substituting the given values for c; and c;, we have

1 > i m 2T
Gl =5 50 50 0= - 22)

P1=—00 p2=—00
+ 2G (wl — @, Wy — 2ip_2.) e‘j(P1+P2)7"
S

V3s




To get this into the given form note that we can write the above equation as

1 & 2
Gs(wy,we) = Z Z G(w — Zr—gl—, wy — P2
2v/3 s? s V3s

™™ 2“p2 i 24
+ 2aG W ——, Wy ———)¢€ J(pl/ p2)w
( ! S 2 \/gs)

P1=—00 p2=—00

where, in the second term, we have replaced p; by p; /2 and chosen a = 0 if p; is odd
and o = 1 if p, is even in order to correct for this change. Hence the second term only
contributes when p; is even and thus we cope with the difference between €2; and fll. The
form of f(py, p») then follows straightforwardly from this and f is given by

[1 + 2aexp (—j(% + pz)w)]

1
f(p17p2) = 2\/5 52

with o as above. [60%]

(c) Contour plots of sampled spectrum

A matrix of values for f(p,p2) forp; =0,1,2,3,4... (horizontally) and p, = 0,1,2...
(vertically upwards) is:

1 31 -11 3
fevm) =372 151 3 1

3 1 -1 1 3

27
V3s
with amplitude scaling factors given by f(p1,p2) above. If G is a 2-D Gaussian lowpass
function, then G, will be of the form shown below (a sketch of a contour plot with labelled
peak values, would be adequate in the exam, as mesh plots are difficult to draw). [15%]

Hence the form of G, will be G repeated at intervals of T horizontally and vertically
s




2 (a) Bandpass filter
Impulse response of the lowpass filter, H,, described is given by

h(ny, na) 1 / H(wy, wp) 8@ Aroamata) GO o0 d( Agun)

@2 Jx )

A A
= A1A2 /qr/ 2 ,/w/ 1 H (wl) w2 e](w1n1A1+wzn2A2) d("ll d(.(]2
271') —n/Ag J—7w[Ay

putting in the form of H, gives

JAVYAYS %2 j(wini A1+wanaAsz)
h(ny,me) = @) efirmArTeanafy) duy dws
- -
Q Q
— A1A22 ! ejw1n1A1 dw, ’ eiwznzAz dws
(27(') -0 -2
A1 2
= Al—zw)%—vﬁsinc(anIAl) sinc(Qyanal2)
which is the result given, using the following working:
Q junA 1 QnA —j0nA 1
. el e/inA _ e—jfin 2sin(QnA) .
[oomw=5a] =i nA mrelfin)

The easiest way of finding impulse response of the filter in fig.2 is by considering a linear
combination of lowpass filters, but can also do it by considering the given filter to be the
difference of the two standard bandpass filters covered in lectures.

First way:

If we define the following lowpass filters:

1 if |w1[ < QUI and |w2| < QLZ

Hl(wl,wz) = {0

1

Hz(whwz) = {0

otherwise

if |w1| < Q1 and |w2| < QU2
otherwise

1 if Q d Q
Hy(un,p) = {0 1 1 < Shorand foal < oz
0 otherwise
The filter, H, in fig 2 can be formed as H = (H, — H3) + (H, — H3) = H, + H, — 2H3.

Thus the impulse response, h, is given by the corresponding linear combination of impulse
responses: h = h; + hy — 2hs. But the h; can easily be written down from result in first
part of the question. Therefore

AA2

h(nl, ’n,g) [QUI QLZ smc(QUln1A1) SmC(QLGgAg)

+ QLI QU2 smc(QLlnlA ) SlIlC(QUQTLQAg)
— 2 Q) Qo sinc(Qp1n1A,) sinc(QpanaAsg)]

5



Second way:

This is more involved, but some candidates may write down straightway the bandpass filters
covered in the lectures. Consider the bandpass filter given in the figure — one way to
construct this is to say that the ideal frequency response of this filter, H(w;,w2), can be

written as
H(wi,w2) = Hy(wr, ws) — Ha(wr, ws)

where H, is a rectangular bandpass filter given by Hy, — Hyp

1 if|w1| < Q1 and |w2| < Qo
0 otherwise

Hla(whwz) = {

1 if|w1| < QLI and |w2| < Qo
0 otherwise

Hyp(wi,we) = {

and H, is the separable ideal bandpass filter representing just the small corner rectangles,
given by

1 ifQLl < lel < QUI and QL2 < l&)zl < ng
0 otherwise

Hz(wl,wz) = {

We know that since H> is separable, we can write it as the product of two 1d filters, i.e.
H2(w1,w2) = Ha(wl) Hb(w2)

where H,(w;) is an ideal 1-D bandpass filter with a lower cut-off frequency of 2;; and
an upper cut-off frequency of 2y;. Similarly Hy(ws) is an ideal 1-D bandpass filter with
cut-off frequencies $27, and Qy». More explicitly we have

H (w ) _ 1 ifQr < |w1| < QUI
e otherwise

1 ifQLz < |w2| < QUZ
0 otherwise

Hb(wg) = {

Thus, we can now work out the ideal impulse response of the filter from the impulse re-
sponses of H; and H;. We have (where h(ng, n2) = h(n1A1, n2A2))

A A,
(2m)?

T/ A2 w /A )
h(nl, n2) = / Hs ((4)1, w2)e](w1n1A1+w2n2A2)d0J1dw2

—w/Agx J -7 /A

from first part of question we can write down the impulse responses for Hy, and H,:

A1 A9
hia(n1,m2) = ;—z%sinc(ﬂwnzé\z) sinc(QpiniAq)
Similarly, for H;, we have
A1 A Qo . .
hlb(nl, 'nz) = —I—E;;?l———QSlnC(QLgnzAg) Smc(QLlnlAI)

6



The impulse response for H, is similarly given by

Al w/Ay ) A2 7/ Ag -
h(’nh 'nz) = 57?/ Ha(w1) er1n1A1 dw1 . _2? Hb(w2)eJW2n2A2 dw2
__.1|'/A1 '—1I'/A2
AN, Q1 Qr1 Q2 Q2
= 2 [ elmb dun — efwrmi dwl] [ e""2n2A2 dws — eJwanala dw2]
(27f) —Qu1 —Qr1 —y2 Qs

where we have formed H, and H,, as the difference of two lowpass filters in each case.

Thus we have

AA ) )
ha(ny,ny) = —(—71r)—22 [Quy sinc(Qy n1A1) — Qpy sine(Qry 1y Ag)]

X [QUZ SillC(QUg ’ngAz) — QLg SiIlC(QLg ngAz)]
Now, forming h(n,, ny) from the difference of h;(n1, n2) and hy(ny, ny) we have

A A ) .
71l'2 2 [QUI QL2 smc(QUlnlAl) SlnC(QLg’n,zAz)
+ QLI QUz sinc(QLlnlAl) SiﬂC(QUzngAz)

— ZQLI QLz sinc(QLlnlAl) SiDC(QLGzAz)]

h(nl, ’I’Lz) =

[60%]



b) Histogram equalisation
The differential equation we start with is

py (y)dy = px (z)dzx
N dy _ px(z)
dz  py(y)

It is required that the output image probability density py (y) be constant over the grey level
range O to L.

1
pr(y) = T
dy
a5 = Lx(o)

T
y=g(z) = / Lpx(u)du
0
(We assume that the lowest value of input image pixels is 0).

In practice the input image probability density is not known and is approximated by the
image histogram and the integral is approximated by a sum.

Let the input image be quantised into N, levels z; spaced by Az; then N Az; = L and

k
Yp = ZLpX(:z:,-)Ax,- for k=0,..,N, -1

=0
Now
px(z)Azx; = Pr{z; < X < z; + Az;}
so if the histogram of the image has NV; occurrences in the bin z; to z; + Axz; then
N;

PX(-’Ei)A.’L‘i:PT{.T,- SXSJI,‘—FAIL‘,;}: N < M

where N and M are the dimensions of the image in pixels. thus the mapping rule becomes:

k

N;

Y = ZLNM
=0

We can see that if K = N — 1, yy,—1 = L as required. This may be considered as a
look-up table — i.e. the above values of y; are formed and stored so that we can scan our
image z and when the value of pixel 7 in z falls within the kth greylevel bin, we map it to

Yk-

[40%)]



3 (a) DCT matrix

For the forward DCT in 2-D, we may transform first the columns of X, by premultiplying
by T, and then the rows of the result by postmultiplying by T7. Hence:

Y=TXT?T

Since T is orthonormal, T~! = TT and TTT =1
Hence, to invert the DCT and get X on the RHS we premultiply the above equation by T7,
and postmultiply by T to get

TTYT=T'TXT ' T=IXI=X

This is the required operation. [20%]

(b) Sum of basis functions

The n? basis functions represent the contributions of each of the n? elements (or coeffi-
cients) of Y to the output image X.

In the expression TT Y T above, we may consider the effect of each element y; ; in Y
separately, by evaluating the case when Y is a matrix of zeros apart from a single non-zero
element y; ; at location (3, 7).

In this case we see that the contribution of y; ; to X is given by:

X(i,5) = t] vij t; =i ti t; =vi; T(,5)
where t; and t; are the i* and j** row vectors from T, and T3, §) is the n X n basis function
matrix for the coefficient y; ;.

Hence the 2-D basis functions T(%, j), from which X may be reconstructed, are given by
the n? separate products of the column vectors t7 with the row vectors t;:

T(i,5) = t7 t; sothat X =) Y y; T(,j)

i=1 j=1

[25%]

(c) Coding of a large image

For the case where the DCT size n = 4, there are 16 subbands but only 7 separate values
for o; ;, corresponding to

: A
p=1+7=2...8 where a,,z;



When Q = A/2, the entropy of the (p — 1)* diagonal row of subbands is then given by

2
H, = 3log, (g—c&(/{%gf— + 1) = 1log, (%;— + 1) /log, 2
= 1.9899 when
1.4600 when
1.1155 when
0.8752 when
0.7008 when
0.5708 when
0.4719 when

I | B |
([

ST T T T T~ I
I
0~ O O W N

This represents the number of bits per coefficient required for each subband.

The 4 x 4 subbands occur in diagonal rows for a given p, so the number of subbands for
p=2...81is {1,2,3,4,3,2,1}.

Each subband contains k2 = 2562 = 64 K coefficients.

Hence the total number of bits for the image is

Nyits = (Ha+2Hs + 3H, + 4Hs + 3Hs + 2H; + Hg) . K

15.4732. 64 K = 990.28 K = 1014048 bits
[35%]

(d) Coarser quantisers and colour

DCT coefficients representing higher frequency basis functions can usually be coded more
coarsely than those for lower frequencies because the higher frequency basis functions are
less visible to the human eye. This is because the contrast sensitivity of the eye falls off at
high frequencies.

It is also found that the sensitivity of the eye to colour difference (chrominance) compo-
nents falls off at much lower frequencies than the sensitivity to brightness (luminance)
components. Hence the red and blue chrominance images can be subsampled by at least
4:1 (2:1 in each direction) relative to the luminance image sample rate, so the total area
of the two chrominance images is only half that of the luminance image. In addition the
contrast sensitivity to chrominance components is lower than for luminance so the chromi-
nance coefficients can be quantised more coarsely and the increase in bit rate will then be
less than 50% . [20%]
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4 (a) Three-level Wavelet transforms

This is the basic 3-level wavelet tree:

Ho(z)
Hy(2) Hy(2)

x H;(z) : - vo:
B2, '

3-level wavelet filter analysis tree

Yoo

i Yoo Hy(z) —-@+Yooo
(12)~

To simplify calculation of overall transfer functions, we must move the down-samplers
from between the filter stages to the tree outputs, using the equivalence between fig. 3a and
fig. 3b, given in the question. Whenever we move a down-sampler from input to output of
a filter, we must replace z by 22 in the filter transfer function.

This is the tree which has been re-arranged so that calculation of overall transfer functions

is simplified:
Ho(#) F(18) yoco
Ho (22)

Hy(z) | H,(2%) "‘ > Yoo1
x Hy() o '
Hy(z) "@" Y1

3-level tree, rearranged with all down-samplers at the outputs.

[30%]

(b) Transfer functions

In an m-level tree, the signal passes through m — 1 lowpass filters, followed by either a
highpass filter or another lowpass filter, depending on the chosen output.

Hence the transfer function to the lowpass output at level m is

H()...o() = HH()(sz—l)
k=1

and the transfer function to the highpass output at level m is

Hy..on = [I:[ HO(ZZk_l)] Hl(z2m‘l)

2
11 [20%]



(c) Transfer functions for a 2-level tree
Using the previous result when m = 2 with the given filters:
HOO = HO(Z) HQ(Z2)
1+2+271) (2 +2+ 272
(2 +222+32+4+3271 + 2272 +277)

f

and

Hyy = Hy(z) Hy(2?)

1e+2+2 ) (-2 —2+6272 22— 27)

(-2 =222 - 32444271+ 12272+ 423 — 4274 - 3275 - 2278 — 277)

Il

(d) 2-d impulse response

In a separable 2-d filter, when two 1-d filters with impulse responses h,, (in the column di-
rection) and hy, (in the row direction) are combined, the matrix representing the 2-d impulse
response is given by:

H,, = h, hf

For a level-2 Hi-Lo filter, the two filters in part (c) are combined with Hy, applied in the
column direction and Hy; in the row direction. Thus the filter vectors are

01y
o'm\ -
006y

004 .

=
B)
|
-
=N W s W N
I
—
[y
3

and the mesh plot of H,, is shown on the right, since h,, is a simple triangular function with
peak value 1, while h, is a linear interpolation through the points &{—2, —4,12, —4, -2} .
The peak value of Hyyis 5 - 32 = 3 .
Since the main feature of Hy, is the vertical ridge down its centre-line, this subband will
respond strongly to vertical lines or edges in the image. The mean of Hy, is zero so it will
not respond to regions constant intensity.

J Lasenby and N G Kingsbury, June 2005.
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