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Module 4F11 Exam 2005 - Speech Processing
Answers

Question 1

(a) The p** order linear predictor is §(n) = a;s(n — 1) + - - - + aps(n ~ p). The prediction error sequence
is

e(n) =s(n) — §(n) = s(n) —a1s(n—1) —--- —a,s(n—p)
[10%]
(b) Taking the z-transform of both sides of the first equation, the following results
e(n) = s(n)- i as(n—1)
E(z) = [1-3% az7"S(2)
S(z) = TE?—;“*FE(Z)
The linear filter is as follows [20%]
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The prediction error sequence can be thought of as excitation to an all-pole model of the vocal tract. The
excitation is either quasi-periodic or *white noise’, for voiced or unvoiced speech, respectively.

(d) The all-pole model requires at least two coefficients for each resonant frequency, so p should be at least
8. ‘

(e) The polynomial A(z) can be evaluated on the unit circle in the Z plane to find the value of A(e?¥) at
equally spaced angular frequencies. The LP spectrum 1/A(e’*) can be found directly.

(f) Formants can be found directly from the LP spectrum. A simple peak picking algorithm could be used;
alternatively, it is possible to look for frequencies at which the second derivative is most negative.

Formants can be found from the LP polynomial by factoring A(z)

1 _ 11’1 1
a=Y i okz k2 (1-2ze27)

The roots zj, will occur in complex conjugate pairs, and p/2 formants can be found selected based on their
angular frequency.

(g) LPC analysis is constrained relative to DFT analysis. LPC will find at most p/2 formants that arise from
fitting the LP spectrum to the speech power spectrum. Extracting formants from a DFT-based spectrum,
via peak-picking, is not constrained by any mode! of the speech signal, so there is no limit on the number
of formants extracted (up to the DFT size), and the DFT-based spectrum is not derived from an all-pole
model.

Question 2
(@)@
FO _{  Harmonic Noise
excitation \ \ / excitation
Voicing decision
Bandpass filter
[ ]
Magnitudes ®
[ ]
Output
Bandpass filter e
speech

(a)(ii) The channel vocoder is based on the source filter models. The fundamental frequency FO0 is detected,
together with a decision whether the sound is voiced or unvoiced. The vocal tract response is represented in
estimates of the magnitude of the spectrum in a number of filter bands. The filter bands are narrow enough
that decimation is used to downsample the output of each filter.

The speech signal is resynthesised by switching the excitation signal between a periodic pulse and white
noise, and subsequent band-selective weighting.

(a)(iii) A non-linear filterbank, with filters evenly spaced along the Mel scale could be used so that more
bands are devoted to lower frequencies at which human perception is more sensitive. Another perceptual
property is auditory masking, when a tone is perceived as diminished in intensity in the presence of a
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stronger tone at a close frequency. The analysis stage could be modified so that fewer bits are devoted to a

sub-band if the signal in a neighboring sub-band is much louder. [20%]
(b) The goal is to minimise the error signal energy:
N-1 )
e(k) =Y (s(n) — u(k)h(n - k)
n=0

where h(n) is the impulse response associated with H(z) = %—3 By setting the derivative of (k) to 0

N-1
‘?f((k’“)) 3 (= 25(n)ha(n — k) + 2u(k)h3 (n — K))
n=0
=0
we get Yot N [35%]
u(k) Y h*(n—k) =Y s(n)h(n - k)
n=0 n=0

and thus a normalised cross-correlation estimate between s(n) and h(n)

_ Fen(k)
u(k) = —_—-f'hh(o)

Substituting this expression for u(k) into the expression for ¢(k) gives the value of the minimized error
signal energy.

(c) If the error signal itself was available, the speech signal could be reconstructed without loss. With this
as motivation, both techniques attempt to improve the quality of the synthesized speech by optimizing the
excitation. CELP uses a codebook to vector quantize the LP residual as part of the encoding processing.
The codebook is built on actual residuals obtained from many speech samples. Multipulse excitation
attempts to produce an optimized excitation by synthesizing an excitation with the goal of minimizing the
mean square distortion of the reconstructed signal. [15%]

Question 3

(a) There are several approaches to parameter initialisation. In a flat start, all parameters are set to be the
same. For example, a global mean and variance can be estimated over all the training data and used to
initialise Gaussian observation distributions. If hand-segmented data is available, individual frames of
speech can be assigned to estimate state (or subword model) parameters. In some cases, previous models
trained on another, not too dissimilar, data-set may be available. These can be borrowed and then refined
using the available training data. [10%]

(b)(i) The partial path probability ®;(t) can be calculated using a recursion, as follows

@;(t) = max{®;(t — 1)ai ;b;(y.)}
Given that the model is a left-to-right HMM, appropriate initialization is ®;(0) = 1if j = 0 and 0
otherwise. [15%]

(b)(ii) At each time step in the Viterbi algorithm, the identity of the best predecessor state is maintained.
This makes it possible to search backwards in time through the trellis starting from state N at time T'. [10%]

(b)(iii) Since the model is a left-to-right HMM, it is straightforward to determine at what frame when each
state in the most likely state sequence begins to generate data. Let ¢; denote the frame number at which



state j starts to generate data. This time sequence {t;} defines the Viterbi Segmentation, and given this

segmentation, the parameters of state s; can be estimated as
1 ti41-1
= Y W
Tt -t ,;,J
1 tj41—1
Bi= g D [~ i)~ )]

tit1 =t t=t;
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The likelihood is guaranteed to increase at each iteration. Using & (T') and & 5 (T') to denote the Viterbi
likelihood before and after a training iteration, the training algorithm can be halted if the increase in likeli-
hood & 5 (T") — @ n(T') falls below a threshold. A second possibility would be to monitor the convergence
of the model parameters themselves.

(c)(i) To train the multiple Gaussian component system, each component is treated as a separate state. Each
of the original emitting states is split into m states, and the mixture weight is absorbed into the transition
probability to each of the newly created states

aj
00—

The Viterbi Segmentation of the training data is found with respect to this model, and the Gaussian pa-
rameters are estimated based on the state alignment, e.g. the parameters of the first Gaussian are estimated
based on the frames aligned to state j1.

The mixture weights are estimated based on the relative frequencies of the component states within the
ki

alignment; e.g. if kj is the number of times that state jm occurs, then &;,, = E—::TJ;

(c)(ii) A simple initialisation scheme makes use of the Gaussian parameters estimated for each state in
the initial application of Viterbi training. The mixture weights can be set unifomly to 1/m; the Gaussian
covariances can be set to the initial covariance estimates; and the Gaussian means can be initialised as
random perturbations of the initial mean estimates. The random perturbation applied to each element of
the mean vector can be determined by the initial covariance matrix.
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Question 4

(a) (i) Triphones are models of individual phones that take into account the immediately preceeding and
following phonetic context. They can therefore handle within-word and (for cross-word triphones) cross-
word co-articulation. Since they are phone models they can be smoothed or tied with other phone contexts.

(a) (ii) Main issues are robust estimation, but also use of triphone models in decoding. Robust estimation
can be solved by smoothing or tying. Furthermore need to be able to decide what to do for triphones that
do not occur in training but are needed for test.

(b) (i) Phonetic decision trees. From notes. A tree grown at the state level (for each of three states left to
right models normally used).

Simple binary decision tree, i.e. yes/no at each node. There are questions about groups of phonetic classes
at each node. The trees are automatically constructed by choosing at each stage the question and node that
gives the largest increase in training data log likelihood from making the split. Stopping is when there isn’t
any node with a large enough gain in log likelihood and/or by a occupancy threshold. The tree divides
all contexts into equivalence classes and the leaf nodes represent these (for all triphones including those
that don’t occur in training). An HMM output distribution is built for each clustered state and the data
from all contexts shared. The advantages are that there is no need to back-off for unseen triphones; and
allows expert knowledge to be incorporated; and allows any degree of context dependency to be simply
incorporated. Disadvantages are that requires expert knowledge to specify question set (but not chosen
questions!); tree building uses locally optimal decisions.

(b) (ii) Agglomerative bottom up clustering. From notes. Assume that all contexts are distinct and simple
models of all training data contexts can be constructed. However to ensure reliable estimates sharing is
required. The basic procedure is to first build models for all observed contexts. Then merge similar states
using a distance measure between distributions and continue to do this until there is enough data for all
states to build robust estimates. This is simple but is unreliable for contexts that occur rarely in training
data. It is also unable (without using back-off) to cluster contexts not seen in training data.

(c) (i) This is the standard way that decision tree clustering is performed, but the problem here isn’t covered
in the notes.

So the problem asked for is to estimate the value of X and N at any node. To estimate X need
£[o?] - E[o]?

for the data associated with the node. If there are a set of contexts C associated with the node and we have
access to the means and variances for each context and conunts then the required value is

Z N; (25 4 pani’] — Z Nipip'
ieC ieCc

The main assumption here is that during the clustering and merging statistics that the values of the state/frame
alignments don’t change so that the original statistics can be combined as above.

(c) (ii) If use mixture distributions we cannot exactly combine the models and so the statistics and the
likelihood change is only approximate (unless go back to original data which is very computationally
expensive). Since the decision tree process is only locally optimal the increase in computation required is
normally viewed as not worthwhile.
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Question 5

(a) The perplexity (PP) is related to the entropy (H) of the language model PP = 2H | The aim is to
compute this from the language model. The probability of a word sequence is commonly decomposed into
the product of conditional probabilities: [20%]

N
P(w()...w()) = [[ P@®w)...wk~ 1)

k=1

The entropy of this word sequence is given by (letting N — oo to obtain a good estimate). However, in
practice we will only have S sequences of words to estimate the entropy of the language model on. The
entropy is

N,

1 s

H=-=— (Z 3" logg P(w(k)|w(1). .. w(k — 1)))
YsesNe 5€S k=1

When we compute the perplexity using this over a corpus of test sentences to get the Test Set Perplexity.

(b) The probability of a word sequence may be expressed as [30%]
_ N+1
Pw(0)w(l)...w(N +1)) = [] P(wk®)w@)...wk-1))
k=0

The language model is required to give an estimate of
P (w(k)|w(1)...w(k - 1))
for any word sequence. For an N-gram restrict the size of the history to the previous N — 1 words. Thus
P(w(k)lw(1)...w(k —1)) = P(w(k)|lw(k = N+1)...w(k—-1))
Basic estimation uses relative frequencies to estimate probabilities. Therefore to estimate the probability

of a particular trigram it is necessary to find the “count” (frequency of occurrence) of triple w;w;wy, in the
training data and then

flwi, wj,we) flwi, wj, wk)

P(wg|w;,w;) = ZZ:! £ (ws, wj, we) - Fw;, wj)

where f(a,b,c,...) = number of times that the word sequence (event) “ab c ...” occurs in the training
data. This relative frequency approach is the ML estimate of the N-gram parameters.

To allow for word sequences not seen in training need to use discounted counts for the N-grams that are
seen. Then we use

y L wj, we)

f(wi7wj)

where d(r) is a discount coefficient. For N-grams not seen enough during training back-off to a lower order
distribution weighted by a suitable back-off weight.

Plwglws,w;) = d(f(w;, wy, we)

The full back-off model is then (e.g. for a bigram)

Pwj|w;) = { d(f(wi’wj))%ﬁ flwi,wj) > C

a(wi)f’(wj) otherwise



a(w;) is the back-off weight, it is chosen to ensure that

V ~
E Pwjlw;)) = 1

=1
and C is the N-gram cut-off point (i.e. only N-grams that occur more frequently than this are retained in
the final model). The value of C also controls the size of the resulting language model.

(c)(i) For the training data, the entropy H can be found from the model itself by summing over the vocab-
ulary to find the expected value of the log probability. [15%]

\'4
H=-1" P(w,)log; P(w,)

v=1
where w, is the word type for the vth vocabulary item. [Note this is not covered in the notes]

(c)(ii) Similarly for a bigram the training data H can be found as [15%]

v v
H==Y" P(w))_ Pwy|w,)log, Pwy|wa)
u=1

v=1

(d) Normally expected that the training set PP will be lower than the test set perplexity, and possibly much
lower. For a fixed sized training corpus the larger the number of language model parameters the larger
this difference will be. If discounting is not used the test set perplexity may be infinite, and appropriate
discouting will increase the training set perplexity and reduce the test set perplexity. [20%)]



	
	
	
	
	
	
	

