ENGINEERING TRIPOS PART IIB

Friday 6 May 2005 9to0 10.30

Module 4A12
TURBULENCE
Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
Special datasheets (2 pages).

You may not start to read the questions
| printed on the subsequent pages of this

question paper until instructed that you
i may do so by the Invigilator
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1 A model equation for the transport of turbulent kinetic energy in high Reynolds
number flow may be written in simplified form as

2
Dk _ K, oU; + “diffusion” —¢.
Dt ox;

Identify the individual terms, explaining what they represent.

In a conventional two equation (k-¢) turbulence model the turbulent or eddy
viscosity, K, is given by K m=Cy k? /g. Estimate the value of C, in a local

equilibrium boundary layer for which the Reynolds stress —uV' =K n0U[0y where

U 1s the mean velocity and y the wall normal distance. You may assume that
u'v’/k =-0.3.

For decaying turbulence sufficiently far downstream of a fixed grid, the turbulent
kinetic energy k& varies approximately as the inverse of x, the distance downstream
from the grid. The integral length scale L of the turbulence is proportional to
&+ constant)?. Show that the turbulent kinetic energy per unit wave number, FE(k),
for an eddy size within the inertial subrange decays faster than the total turbulent kinetic
energy.

2 A two-dimensional jet issues into stationary ambient fluid. The entrainment
velocity u#, =aU, where U is the local jet velocity, and this is assumed constant over

the jet width. Using the similarity assumption that any mean property of the jet varies

only as x?, where x is the streamwise coordinate, determine appropriate values of S
to describe:

(1) the jet width;

(i) the jet velocity;

(ii1) the largest scale of turbulence;

(iv) the dissipation of turbulent kinetic energy per unit mass &, and
(v) the smallest scale of turbulence (the Kolmogorov microscale).

You may assume that all jet properties are independent of the width of the jet and that
% is constant along the jet. Comment on these assumptions.
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3 (@) Sketch Burgers’ vortex showing the irrotational straining motion and the
vorticity. Why is Burgers’ vortex thought to be important in turbulence? [10%]

(b) Consider the vortex sheet

' — 52 A
W = w, exp 52 e,

where w, and & are constants. This corresponds to the velocity field U. =u,, (x)éy .
Show that (w-V)u, and (u, -V areboth zero. [20%)]

(c) The vortex sheet sits in the irrotational strain field,
u, = (—ax, 0, az)

where « is a constant. Show that, if & is chosen appropriately, this constitutes an
exact solution of the steady vorticity equation

U-Vw=(w-Vu+wWw
and find an expression for § intermsof v and «. [40%]

(d) The strain field is suddenly removed, so that the sheet thickness, o ,
becomes a function of time. What is the governing equation for the unsteady vortex
sheet? Describe how you would expect & to vary with time. [30%]
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4 (a) What are Helmholtz’s laws of vortex dynamics?

(b) Starting with the inviscid vorticity equation
Dw
— ={w-V s
-, =WV
show that the helicity density, u-w, in an inviscid fluid satisfies

gt_(u.w)= V. [(uZ/Z—P/P}"]'

Hence show that the volume integral of u-w,
H= |u-wdV,

is conserved for a localised distribution of vorticity.
(c) Consider two, thin, interlinked vortex tubes as show in Figure 1. They have

volumes V; and V,, vorticity fluxes @, and @, , and centre-lines C; and C,.
Confirm that the net helicity is given by

H = Ju-(@,d1)+ cj.u-(CDZdl)

and use Stokes’ theorem to find an expression for H in terms of @, and @,.

(d) If the direction of the vorticity in one of the tubes was reversed, how would
your expression for H change?

(e) Why would you expect helicity not to be conserved if the fluid were (i)
viscous, or (ii) subject to a buoyancy force?

(cont..
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vortex tube 2.
&

vortex tube 1

Fig. 1 Two interlinked vortex tubes.
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4A12 Turbulence

Integral length-scale:

oo (x, t)u(x + 1, t)dr
B u'(x, t)u'(x, t)

l

Reynolds number of turbulence:
!
u'l
Rg - -
v
where u' is the rms of velocity fluctuations u' = \/uju!.
Reynolds stresses: —puju;

Navier-Stokes equation for the mean flow

.a_qt;+ U.égi—__a_g.*.__a_(_-TJ).{. 9 an+an
Pot T P52, T Tom oz, 1™ T bg, [P\ bz T Bz

Transfer of energy between mean flow and fluctuations: —pujule;;
. . . . . . —_ 1 ! 13
Viscous dissipation per unit mass: ¢ = 2 ve;;e}; ~ u®/l

Spectral decomposition of the kinetic energy density;
o0

E= /0 E(k)dk
Kolmogorov cascade in the inertial range:

E(k) ~ €5k}
Kolmogorov micro-scale of dissipation:

vi l

n 6% Rt3/4

The log region in the turbulent boundary layers:

g—=Alny++B

"
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4A12 Vortex Dynamlcs

Grad, Div and Curl in Cartesian Coordinates

d o o

vi=|Z% Z Z.

f(ax,ay,&)
Od, 94, OA,

V- A= ax+.9y >
i j k

Vxd=ld 9 9| (94, 94y o4, o4, 94 o4,
& & o | az % & > ay
A, A, 4,

Integral Theorems

Gauss: [(V-A)aV =§A-dS

Stokes:j(VxA).aLs'=§A-d1

Vector Identities

V(A-B)=(A-V)B+(BV)A+Ax(V x B)+ Bx(V X A)
V.(A4)=f(V-A)+A-Vf
Vx(AXB)=A(V-B)-B(V-A)+(B-V)A—(A-V)B
Vx(VxA)=V(V-A4)-V34

Vx(Vf)=0

V. (VxA)=0

Cylindrical Coordinates (r, 6, z)

(L1 I z
Vf-( "roé’ &z)
P
q4=19 14 a4,
VA—r&'(rA')+r39+¢k
‘r réO .z N
1l 2@ @ 0 )
VxA=T3 % Z { Lt
4 rdg 4 <~
x 3

104, Mg 4 M, 10 134
VA= (r&@ % % o rori e ae)
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