ENGINEERING TRIPOS PART IIB

Friday 29 April 2005 9.00 t0 10.30

Module 4C1
DESIGN AGAINST FAILURE

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
Special datasheets (10 pages).

You may not start to read the questions
printed on the subsequent pages of this

| question paper until instructed that you may |
do so by the Invigilator
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1 (a) Using schematics, define a dislocation jog. Comment on why a jog cannot
move by glide.

(b) Define the density p of dislocations, and comment on how it is related to
strain. :

(¢) Use a simple square array of dislocations to establish the relationship
between jog spacing and dislocation density.

(d) Assume that dislocation jogs act as the pinning points of the Frank-Read

sources in a material. Hence use the result obtained in (c) to show that the shear yield
stress 7, of a metal is given by

7, = Gbp' /2
where G is the shear modulus and b is.the Burgers vector of the material.

(¢) Comment on the implication of shear strength relation derived in (d) on the
hardening curve of a metal, and list at least 3 additional hardening mechanisms.

[20%]

[10%]

[25%)

[30%]

[15%]
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2 (a) Describe the mechanisms of intergranular creep failure, identifying which
stage of the process dominates the lifetime for: (i) an effective stress material and (ii) a
maximum principal stress material. [30%]

(b) Sketch the isochronous failure surface (in principal plane stress space) for
each case in (a). [20%]

(c) A section of pipework in a power generating plant has a radius of 150 mm.
The pipe experiences an internal pressure p of 2 MPa (which induces only a hoop
stress in the pipe) and a torque T of 20 kNm. Two materials are being considered for
this application, designated alloys A and B, which have the following properties at the
design temperature of 500°C:

Property Alloy A Alloy B
Stress required to give a time to
failure of 10,000 hours in 100 MPa 120 MPa
uniaxial tension
Multiaxial failure criterion Maximum principal stress | Effective stress
Cost 0.35 £/kg 0.40 £/kg
Density ' 7.8 Mgm™ 7.8 Mgm™

-

In uniaxial tension under a stress o the time ¢ f 1o failure of both materials can be

obtained from a relationship of the form
t f= Ao -3

where A is a material constant. If the design life of the plant is to be 100,000 hours,
calculate the minimum pipe thickness for each alloy. Hence determine which material
is the most economical to use. [50%]

(TURN OVER
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3 (a) Briefly explain the concepts of small scale yielding and discuss the
applicability of K- as a fracture criterion.

(b) A cylindrical pressure vessel containing hydrogen is made from a high
strength steel with tensile yield strength 1800 MPa and plane-strain fracture toughness
Kic =60 MPa m'2. This high strength steel is known to exhibit slow growth of
thumb-nail cracks in the presence of hydrogen according to the relation

da_ 106k
dr

where, a is the crack depth, da/dr the crack growth rate in m hour! and K the
crack tip stress intensity factor in MPa m'2. For a thumb-nail crack in the wall of the
cylindrical pressure vessel, K is given by

K =1.130‘h\/72'a

where o, is the hoop stress in the cylindrical pressure vessel wall. The pressure
vessel is required to operate safely at a design hoop stress of 540 MPa for at least one
hour. You may assume that wall thickness of the vessel to be sufficiently large so that
plastic yielding is not an operative failure mode.

(1) Calculate the crack depth a,, at which the pressure vessel would
immediately fail at the design hoop stress of 540 MPa.

(ii) Calculate the initial crack depth a; which would grow to the depth
a,, in one hour with pressure vessel operating at the design hoop stress.

(111) In order to ensure a high probability of survival of the pressure vessel
for at least one hour operating at the maximum design stress, the vessel has
to be proof tested before going into service. Determine the value of the
proof stress.

(iv) Comment on the appropriateness of the proof stress calculated in (iii)
by discussing the validity of linear elastic fracture mechanics for this
problem.

[15%]

[15%]

[25%)]

[30%]

[15%)
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4 (a) Define the energy release rate G and the stress intensity factor K.
Briefly describe how these quantities can be used to characterise fracture in engineering -
materials. [30%]

(b) Two strips of aluminium of length L, thickness 4 and depth B (into
the page) are glued together using an epoxy adhesive as shown in Fig. 2. A release
agent is applied to part of the surface of one of the strips to create of central crack of
length 2a. One of the aluminium strips is then cut through its thickness at the centre of
the crack as shown. The entire assembly is subjected to a bending moment M. If
L>a>> h, show by considering the energy released during a small increment of crack
growth, or otherwise, that the energy release rate G is

_21 M
- 4 Ep’B?

where E is the Young’s modulus of aluminium. [50%])
(c) Determine the critical energy. release rate G, of the joint if #=5mm,

B=25mm and the crack starts to propagate when M =65Nm. You may take the
Young’s modulus of aluminium E to be 70 GPa. [20%]

M
M za h A
——— v

hA
l A4

L

Fig. 2

END OF PAPER






Engineering Tripos Part IIA THIRD YEAR
Paper G4: Mechanics of Solids
ELASTICITY and PLASTICITY FORMULAE
1. Axi-symmetric deformation : discs, tubes and spheres
Discs and tubes Spheres
di ‘ der2
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3. Torsion of prismatic bars

. dF dF
Prandtl stress function: ox (=7%) = o %y Ew=-F

Equilibrium: T = 2fFdA
A
Governing equation for elastic torsion:

V2F = -2GB where B is the angle of twist per unit length.

4. Total potential energy of a body
N=U-w
where U = ‘;'j eT[Djgdv , W=PTy  and [D] is the elastic stiffness matrix.
14
5.

Principal stresses and stress invariants

Values of the principal stresses, dp, can be obtained from the equation

Ox-0Op  Oxy Oxz
Oxy Oyy-0Op Oy

Oxz Oyz Oz — Op
This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.

Expanding: op® — I3 0p2 + lop — I3 = 0 where I} = Oxx + Oyy + Oz,

Oxx Ory Oxz
loyyoyz IO&xO&z Oxx Oxy o
I = + d I3 = y Oyz
2 Gz Oz Oz Oz Gy Oy an 3 w
Ga Op Of

6. Equivalent stress and strain

. - 1 r
Equivalentstress & = \[7 ( (01~ )2 + (02— 3)2 + (03-01)2,

Equivalent strain increment de =\/§' ( de2 + dex? + deg?, 12

Yield criteria and flow rules

Tresca

Material yields when maximum value of loy — ol, lop -3l or los~o)l = Y = 2k, and then,

if o3 is the intermediate stress, dej : dey:des = A(1:-1:0)where A 20.

von Mises

Material yields when, (01 - ®)? + (02 — ;3)? + (03 - 01)?

= 2Y2 = 6k2, and then
dey gs_z dey de) -der dey-des de3 - de) 3 ﬁ
7 T 0 T 03 T a-a; - oo T ;- = A=71G
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FRACTURE MECHANICS DATASHEET

Crack tip plastic zone sizes

r

2
—l-(!—(—I—J Plane stress

. T\ Oy
diameter, 4 b= )
—1—(&) Plane strain
kY 4 Oy
L
Crack opening displacement
2
Xr Plane stress
oyE
0 =< )
lﬁ Plane strain
2 ayE
Energy release rate
1 2
ki Plane stress
G= 2
1-v

K ,2 Plane strain

2
Related to compliance C: G =-1— £ ig



Asymptotic crack tip fields in a linear elastic solid
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Crack tip stress fields (cont'd)

Mode IT

Mode III
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Tables of stress intensity factors

Goo

FAttatats —
ETIRRNTRY

e e~ — Ky = Tuy7a

W S |
|

- \—‘Cm

K =Tey7a

Ky =1120.7a

1-a/2W+0.326a% | W?
K =d°°\/n’a
! L -2l W )

~zal—

SRERRERES
2w —



Pi

__P; Ja+x,
-\/na a—x,
2pb a sin2
1/lta b
2\/-3_Pa h«a and h« b
hh B
1 Eu H« a and H « b
2aH
1-v? Plane stress
1—3v2—2v3 Plane strain
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- 1.6

112
Kj=——o047a ¢ & /
) 1= 1.5 7
14 /
--.8 74 s o 1 13} ,
E\ ®= (1-"—%“—9:129} o 12 /
Zc\l ¢ 11 /

0 2
1.0
\‘\ﬁ/ | 0 0204 06 08 10
4 o/e

o =GO ta F| a
e prptrpyy B )
| value of F (a/ r)T
_2:03 o _a_éo One crack Two cracks
dabak ;
; U B U B
O l l l l l l l v l 000 336 224 336 224

0.10 273 1.98 273 1.98
0.20 230 1.82 241 1.83
0.30 204 167 215 1.70
0.40 186 - 158 1.96 1.61
0.50 L.73 1.49 1.83 1.57
0.60 1.64 1.42 1.7 1.52
0.80 147 1.32 1.58 143

1.0 137 1.22 145 1.38
1.5 1.18 1.06 1.29 1.26
20 1.06 1.01 121 1.20
3.0 0.94 0.93 114 1.13
5.0 0.81 0.81 1.07 1.06
10.0 0.75 0.75 1.03 1.03
o 0.707 0.707 1.00 1.00

tU = uniaxial 6., B =biaxial o..
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