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1 (a) Discuss a range of approaches that may be taken to design safe systems.

(b) Describe the method of Fault Tree Analysis and explain its role in the
analysis of system behaviour.

(c) A butane gas supply is being designed for use in a fire-fighter training unit
(FFTU) (Fig. 1). A butane tank is connected to a feed line via two manual valves
connected in series. The pipe traverses 100 m underground to the FFTU where it is
connected to a pair of shutdown valves, again connected in series.

The shutdown valves are designed to fail-safe and each contains two position sensors
monitoring their open and closed positions. A control system monitors the position of
the shutdown valves and will close them if there is a persistent discrepancy between the
sensor states and valve position. The shutdown valve control signal is connected via a
pair of fail-safe butane sensors wired in series. If butane gas is detected the shutdown
valves will be automatically closed.

Butane flows from the shutdown valves to a pressure regulator and then to a
proportional burner valve. The valve is controlled by the burner valve control signal
and has two position sensors monitoring its open and closed positions. The burner valve
control signal is connected via a pair of guard rail sensors which prevent the valve
opening if the guard rail is not in position. The guard rail prevents fire-fighters from
falling on the burner. The height of the burner flame is controlled by the burner valve

control signal.
Manual valves Butane sensors . Guard rail

Butane tank

Fig. 1

(i) Draw a fault tree to show the events that may lead to a fire-
fighter falling on the burner when it is lit.

(ii) Draw a fault tree to show the events that may lead to a butane
gas leak.
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2 A leading pharmaceutical company wishes to develop a new Dry Powder Inhaler
(DPI). The device is to deliver no fewer than 200 doses. The powder is to be stored in
bulk in the inhaler, i.e. all the powder is to be stored in a single compartment.

The base material, which is used to provide bulk to the active ingredient, is lactose
which is known to be hygroscopic. Particles with sizes in the range 30 to 70 pm are
known to be acceptable for inhalation. Each dose, including the lactose, nominally
occupies a volume of 5 mm3.

The company would like to investigate two different powder formulations. The first
comprises lightly compressed powder in the form of a cylindrical pellet. The second
comprises loose uncompressed powder.

(a) Use a solution neutral problem statement to describe the overall function of
the new inhaler.

(b) List the key requirements for the new inhaler.
(c) Define a process function structure for the inhaler.

(d) Detail two inhaler concepts, one for each powder formulation, that will
ensure effective administration of the powder.

(¢) Discuss the relative merits of the two concepts presented in (d).

(TURN OVER
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3 Anengineer wishes to determine the optimum hub height 7 and blade tip radius
r of a windmill for a particular site.

The wind velocity U at a height h above the ground may be given by the following

power law:
a
uh) | h
U, h,

where U, is the wind velocity at a reference height k, and the parameter a = 1/3 for

this particular site.
The mechanical power P extracted from the wind by the windmill is given by:
1 .3
P= -5 pU C pA

where o is the density of air, U is the wind velocity at the windmill hub, C p 1s a fixed

coefficient of performance and A is the area swept by the blades.

(@ () Given that no part of the windmill may exceed a height limit h,,,,
make a formal optimisation statement for maximising the mechanical
power P . Include all obvious constraints and distinguish between
constants, parameters and variables.

(i) Find the values for the variables & and r that give an optimum for
the maximum power and comment on the activity of any constraints.

(b) A simple financial model for the windmill gives the construction cost of the
blades and generator as £800r3 and the cost of the tower and foundations as £3h3r2
where h and r are in metres. The efficiency and lifetime of the windmill is such that
it has a current financial value of £kP where P is the mechanical power of the

windmill in Watts and:
900

k=r——7——=
l:wUr3CP :l

2h,
(i) Find an objective function for the net cost of the windmill.

(i) Using h=16m and r="7m as a starting point use one step of the
gradient (steepest descent) method to find an improved design.
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4 During use the chain and chainring on a bicycle wear. This leads to a lengthening
of the chain and ultimately the chain will jump off the chainring under load. A simple

model has been found to be useful in estimating the effect of chain and chainring wear
by focussing on the effective pitch of each part.

The mean effective pitch of the chain P. in mm and its deviation o, are given by:
P.=Po(1+at) and o.= op(1 + 10ar1)

where a represents the effect of chain wear, ¢ is the time in years, F, is the mean
pitch of a new chain and 0o is the standard deviation in pitch of a new chain.
Similarly, the mean pitch P, and deviation o, of the chainring are given as:

P,=Pyp(1+ 1 and o= op(1+1081)
where B represents the effect of chainring wear.
If the difference between the chain and chainring pitches exceeds 0.5+0.1 mm the chain
will be prone to jump. For a particular chain and chainring, Fy=12 mm, 64 =0.01 mm,

a=0.04 and £=0.02.

(a) Estimate the time in years when the safety factor for the chain jumping
reaches unity using:

(1) mean pitch values;
(ii) worst case pitch values.

(b) Estimate the time in years when the safety margin for the chain jumping
predicts that 5% of chains will jump.

(c) If chain lubrication can reduce wear by a factor of two (a=0.02 and £=0.01),
estimate the revised time in years before 5% of chains jump.

Assume that all probability distributions are normal and that the range from minimum to
maximum is equivalent to two standard deviations.

END OF PAPER
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1.0 OPTIMIZATION
DATA SHEET

1.1 Series

Taylor Series

For a function of one variable:
f(x) +8)=f(xy )+8f '(xk)+—;—82 f"(xy)+... where Xy, =X+
For a function of several variables:

f(xy +5_’£)=f(lk)+{Vf(lk)}t§£+%5_xtﬂ(lk)§_’i+--- where Xy ,; =Xy +3x

where {Vf(x, )}t is the Grad of the function at X, :

[af()_(k) of (x, ) of (x.) ]

axl aX2 w axn

and H();k) is the Hessian of the function at (x ):

i) M) 0%l)
x> 0x10 X 5 0x10 X
3% (xy )
ax2a X1
%(xy)  %(xy) 0 3%M(xy)
0x,0%x;  9x,0 X, x>

Note: 1. Vf (lk) is defined as a column vector.

2. The Hessian is symmetric.
3. If f(x) is a quadratic function the elements of the Hessian are constants and
the series has only three terms.



1.2 Line searches

Golden Section Ratio = \[5—2_ 1. 0.6180
Newton’s Method (1D)
When derivatives are available: Xie1 =X — {0 (x5 WE (xi )}

When derivatives are unavailable:

1("22 -x32)f(xl ( ‘X12) X2)+(X12‘X22)f(x3)
2 (xz- Xs)f(xl)+(x3—Xl)f(xz)+(xl—x2)f(x3)

X4 =

1.3 Multidimensional searches

Conjugate Gradient Method

To find the minimum of the function
f(x) = f(_)go)+ Vf(go )t BL+-;—8£H81, where 0x =X - X and X has n dimensions:

First move is in direction s from xwhere:

So =- Vi(xo)

Then Xp41 =X + 08y

~5,"ViE(x, ) L .
where oy =—————  (which minimises f(x) along the defined line)

sk Hsy

Then Sk+1 =’Vf(lk+1)+ Bi sk

Vi(xp ) H
where Bk - (—k+l) §k

§ktH§k

For a quadratic function, the method converges at x, .



Fletcher-Reeves Method

To find the minimum of the function f(x) where x has n dimensions:

First move is in direction s from x, where:

s0 == Vf(xo)
Then Xk+1 =Xk T 08, such that f(x) is minimised along the defined line.
Then Sica1 =~ VEQk41) + Brsy

(Vi) i
(Vf (xx ))2

For quadratic functions, the method will converge at x , . For higher order functions,
the method should be restarted when x , is reached.

where B =

1.4 Constrained Minimisation

Penalty and Barrier functions

The most common Penalty function is:

P

q(u.x)=f (5)+ﬁz (max[0, ()] P

i=1

where f(X) is subject to the constraints gl(l) <0,...8p(x)<0

A typical Barrier function for the same problem is:

p
-1) gi(x)
i=1



2.0 STATISTICS DATA SHEET
2.1  Standardised normal probability density function

f(2) 2 __22
P(z<a)=——:lz— 2 dz
\\‘ /I8
W -

P

()

z 000 001 002 003 004 005 006 007 008 0.09

0.0 | 5000 .5040 .5080 .5120 5160 .5199 .5239 5279 5319 .5359
0.1 5398 5438 5478 5517 5557 .5596 .5636 5675 5714 5753
0.2 | 5793 5832 5871 .5910 5948 5987 .6026 .6064 .6103 .6141
03 | 6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
04 | .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879

0.5 .6915 6950 .6985 7019 .7054 .7088 .7123 7157 .7190 .7224
0.6 | .7257 .7291 .7324 7357 7389 7422 .7454 7486 1517 .7549
0.7 7580 7611 .7642 7673 7704 7734 7764 7794 7823 .7852
0.8 | .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
09 | .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 | .8413 8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 8665 .8686 .8708 .8729 .8749 8770 .8790 .8810 .8830
12 | .8849 .8869 .8888 .8907 .8925 .8944 8962 .8980 .8997 .9015
13 9032 9049 9066 .9082 .9099 9115 9131 9147 9162 9177
14 | .9192 9207 9222 9236 .9251 9265 .9279 .9292 - 9306 .9319

1.5 9332 9345 9357 9370 9382 .9349 9406 .9418 .9429 .9441
1.6 | 9452 .9463 9474 9484 9495 9505 9515 9525 9535 .9545
1.7 | .9554 9564 9573 9582 9591 .9599 9608 .9616 .9625 .9633
1.8 ] .9641 9649 9656 9664 9671 9678 9686 9693 9699 .9706
19 | 9713 9719 9726 9723 9738 9744 9750 9756 9761 .9767

20 |.9772 9778 9783 9788 9793 9798 9803 9808 9812 .9817
2:1 9821 9826 .9830 .9834 9838 .9842 9846 .9850 .9854 .9857
22 | 9861 9864 9868 9871 9875 9878 9881 9884 9887 .9890
2.3 9893 9896 .9898 .9901 9904 9906 9909 9911 9913 9916
24 | .9918 9920 9922 .9925 9927 9929 9931 9932 .9934 9936

2.5 ]1.9938 .9940 .9941 9943 9945 9946 .9948 9949 9951 .9952
2.6 |.9953 9955 9956 9957 .9959 9960 .9961 .9962 9963 .9964
2.7 1.9965 9966 .9967 9968 9969 .9970 9971 9972 9973 .9974
2.8 1.9974 9975 9976 9977 9977 9978 9979 9979 9980 .9981
29 | .9981 9982 9982 9983 9984 9984 9985 9985 9986 .9986

3.0 | 9987 9987 9987 9988 .9988 9989 9989 9989 9990 .9990
3.1 9990 9991 9991 9991 9992 9992 9992 9992 9993 .9993
3.2 | 9993 9993 9994 9994 9994 9994 9994 9995 9995 .9995
3.3 [ 9995 9995 9995 .9996 9996 .9996 9996 .9996 .9996 .9997
3.4 | 9997 9997 9997 9997 9997 .9997 9997 .9997 9997 .9998

TABULATED VALUES



2.2  Combining distributed variables

For the function

where xp, X, etc. are independent and defined by their respective distributions:

y=£(x1,%X2,...X5)

y ”.y cy2
X+a Uy +2 0_x2
ax apy a2(5)‘2
ajxy +asxy ajiy +ashy a,206,% +a,20,2
X1X2 Mo M12022 +M22012
X1/X2 H1/po u_l[(PIZUZZ g2 012)

Where: u = mean; ¢ = standard deviation; a = constant.




	
	
	
	
	
	
	
	
	
	
	
	

