ENGINEERING TRIPOS PART IIB

Wednesday 27 April 2005 2.30 to 4

Module 4C9

CONTINUUM MECHANICS

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Candidates may bring their notebooks to the examination.

Attachments: Special datasheet (3 pages).

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 (a) The stress tensor at a certain place in a body, expressed in a set of orthogonal
axes (xj,x,,x3), is given by

3 4 -8
o;=| 4 -2 6 |MPa
-8 6 5

(i) What is the value of the stress vector acting on a surface which, at this
point, is described by a normal vector which has components, expressed in the
same axes, in the ratio 2:1:3.

(ii) A second set of axes (x{,x3,x3) is defined in relation to the first by the
rotation matrix

0.866 -0354 0.354
a;=| 05 0612 -0612
0 0707 0.707

Find the numerical value of 0%;.

(b) A body is subject to a single load T which is steadily increased until the limit
load T is reached.

(1) State the upper bound theorem for TL. Discuss carefully the assumptions
made.

(ii)) If the body is elastic perfectly-plastic and yields according to the von
Mises criterion, using the J,-flow theory, show that
3 éesij
8.. = -
Y 20

and [0é;dV =0, [ &4V
Yy 14 \4

where V is the volume of the body, 0, is the tensile yield stress, s;; is the

deviatoric stress tensor and €, is the equivalent strain.

[25%]

[25%]

[20%]

(30%]



2 Confirm that the function
o= C[xz +y? —-l—(x3 - 3xy2)—ka2} ,
a

inwhich C and k are constants, can be used as a Prandtl stress function to investigate the
elastic torsion of a prismatic bar whose cross-section is an equilateral triangle of side
2a/~/3, as illustrated in Fig. 1, provided that the constant k takes a specific numerical
value which should be found. The origin of the axes is coincident with the centroid of the
cross-section. ‘ [40%])
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Fig. 1

(a) If a=0.15 m, shear modulus G = 80 GPa and the rate of twist per unit
lengthisto be 5 °m™! , find the value of the shear stress at the mid-point of each side of the

section. [30%]
b Confirm that the function
Y= B(y3 - 3x2y),
in which B is a constant, can be used to describe the warping of a section of the bar. Find
the value of B in terms of the dimension a. [30%]
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3 A thin-walled cylinder is subjected to a combined loading of torsion and longitudinal
tension. An infinitely small material element taken from the wall of the cylinder has
longitudinal stress ©,,, shear stress Oyg,, longitudinal strain &,, and engineering shear
strain Yg,(=2¢g,) in the cylindrical coordinate system. In uniaxial tension, the material of
the cylinder follows a bi-linear stress versus strain relationship with its modulus before and
after initial yielding represented by E and F respectively. The material yields according
to the von Mises criterion with initial yield stress o,.

(a) Describe how the yielding criterion in uniaxial tension, o =0,, is
generalised to obtain the von Mises criterion for general three-dimensional problems.
Discuss carefully the assumptions used. ' [20%]

(b)  Express explicitly the bi-linear stress strain relationship in uniaxial tension,
and hence determine the secant modulus E; and tangent modulus E,. [25%]

(c) Using the J,-flow theory find the incremental constitutive relations
governing dg,, and dyg,. [30%]

(d)  Loading of the cylinder is proportional, with the ratio ©,,/0g, fixed at a
value of +/3. When O, reaches 0O, determine the corresponding strain
component &£,,. [25%]
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SUBSCRIPT NOTATION

Repeated‘ suffix implies summation

a=a1e) +azey +ase;
aeb
c=axb
d=ax(bxg)
Kronecker delta 5ij

e,-jk

e—0 identity
tracea

30',-1- _ aalj 80'2]- +30'3j

dry dy oy I

gradg =V¢

divV

curlV =V xV

Rotation of Orthogonal Axes

If 01°2°3" is related to 0123 by rotation matrix a;;

vector v; becomes

tensor o becomes

a;e;
ab; = aibj5,-j
| ¢; =ejpajby
dy = —ejjxeirsaibcg = ajbrc; — aibicy
6;=1for i=j and 6;=0 for i#j

e;ix =1 when indices cyclic; = ~1 when indices anticyclic
and = 0 when any indices repeat '

€iikeitm = 0j101m — 0 jmOn
tra =a;; = a1 +ay +azz

Gij,i

/)

’ - . .
Vo = GgiV;

’ p—t . . ve
Gaﬂ = amaﬁjoy
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Evaluation of principal stresses

deviatoric stress s; = O

03—Ilo'2+120—13=0

S - +Tps-15=0

equilibrium

small strains

compatibility

Linear elasticity
Hooke’s law

Lamé’s equations

Elastic torsion of prismatic bars

——O'kka

Il =05 = tro
1
12 =5(Giio-]] O; O'])
1
= 'ﬁ'(eijkepqr"ip"iq"kr)
1

1 ,
Ii =5; = trs ; I'z = ESUSU ; 13 = gsijsjkski

Oij»itbj =0

. Ou;
&y = (gx“' &] ;(ui,j'*'“j,i)

Eij ki t €kl ij — Eij,ki — Eki, 1€ pikeqji€ij ki = 0

828,--

J
e — YU _
“Pikail 3 o,

equivalentto epeq;)€;j k1 =

0ij = Cijki€n
Eej; = (1+V)o;; — Vo0

O;j = A&y 0 +2Ug;;

Warping function ¥(x;,x, )satisfies Vi = Y=

If Prandtl stress function ¢(x;,x;) satisfies V29 = ¢ =—2Go where « is the

twist per unit length then

o9

¢2— % ; 032=‘¢,1=-9;‘ and T =2{f, (1, Jdxridxy

2
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Equivalence of elastic constants

E v G=u A
E v - - E vE
2(1+V) 1+ v)(1-2v)
E,G - E-2G - @G-E)G
' 2G E-3G
E 2 - E-A+R E-3A+R _
42 4
v, G 2G(1+v) - - 2Gv
1-2v
v, A Al +v)(1-2v) - A(1-2v) -
1% 2v
G A G(31+2G) A -
A+G 204+G)

R=vE2 +2EA+9A2
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