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MECHANICS OF BIOLOGICAL SYSTEMS
Answer not more than three questions.

All questions carry the same number of marks.
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1 () Summarise the main mechanical functions of the cytoskeleton within a cell,
by reference to the microtubules, actin cortex and intermediate filaments. [30%]

(b) Outline the} structure of a sarcomere and explain the role of the thick
filaments, thin filaments and the Z-discs. [30%]

(c) What is the significance of the persistence length in dictating the properties
of biological fibres? [20%)

(d) Explain the significance of the stiffness of the wall of a blood vessel in
determining the blood flow rate. [20%]
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2 A two dimensional biological network has the microstructure shown in Fig. 1. It
can be treated as a periodic assembly of elastic-ideally plastic struts, with cell wall
Young’s modulus Es and yield strength oyg . The struts are of uniform thickness ¢ .

(a) Obtain an expression for the relative density P in terms of ¢ and the cell
size £ . [15%]

(b) Calculate the effective modulus E, and the effective yield strength oyy
along the x, -direction. The contribution from bending of the struts may be neglected. [30%]

(c) The effective strength of the network along the x;-direction is dictated by
plastic bending of the hinges at the ends of each inclined strut.

(i) Use a velocity diagram to relate the rate of rotation of the inclined
struts to the resulting macroscopic strain rate £;; along the x; -direction. (15%]

(i) Use virtnal work to obtain an expression for the macroscopic effective
strength oy along the x;-direction in terms of the relative density and the

cell wall strength oyg . [20%]

(iii) Calculate the nominal tensile strain along the x; -direction in order for

the structure to switch from a bending dominated response to a stretching
dominated response. [20%]

X2

X1
Fig. 1
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3 (a) Physiologists have long known that muscle speed v decreases with
increasing load 7 according to the Hill equation

(T+aly=b(T,-T)
where a and b are constants and T, is the isometric tetanic tension.

(i) Use the Hill equation to derive an expression for the power output of
the muscle as a function of the muscle load T .

(i) Determine the muscle speed v at which the muscle power is
maximised. What is the implication of this in selecting a gear on a bicycle
when riding up an incline?

(b) In the Huxley sliding filament model for a muscle, the fraction n(x) of
attached crossbridges is given by

n, explkx/ v)  x<O
n(x)= n, 0<x<h
0 x>h

where n, and k are constants, x is the position of an actin binding site from the

equilibrium position of a myosin head and v=-dx/dt is the shortening velocity of
the muscle. The muscle under consideration has a cross-sectional area A , sarcomere
length s, and m crossbridges per unit volume. Assume that a linear spring with
stiffness A connects the myosin head to the thick filament.

(1) Determine the tension-velocity relation for this muscle. You may
assume that the myosin sites M and the actin sites A have a separation [

which is much greater than 4 .

(i) Sketch the tension-velocity relation determined above and briefly
discuss the quality of the agreement of this model with the Hill equation.

Hint: Ixeqxdx = —1? [qxeqx - eqx]
q

[10%]

[30%)]

[40%]

[20%]



4 (a) Describe the role of the respiratory system and its principle of operation. [20%]

(b) Describe and account for the variations of partial pressure of O, and CO; in
the blood when entering and leaving the alveolar capillaries. [20%]

(c) Explain the mechanism of CO, removal from the blood. [20%]

(d) Oxygen is dissolved at concentration U uniformly across the cross-section
of a capillary; steady state conditions are assumed such that U is independent of time ¢
but can vary with the axial co-ordinate x along the capillary, of length L , uniform
cross-sectional area A and perimeter C . The partial pressure P of the gas and the
velocity v of blood flow can be taken as constant along the capillary. Diffusion of
oxygen across the capillary wall is governed by

oU U
-a—t—+v—5;—D(oP—U)

where D is the diffusion constant and o is the solubility of oxygen in blood.

(i) Obtain an expression for U(x) , with the end condition U(0)=U. [20%]

(i) Use mass conservation to calculate the rate of loss of oxygen across the
wall of an infinitely long capillary. [20%]

END OF PAPER
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Paper G4: Mechanics of Solids

ELASTICITY and PLASTICITY FORMULAE

1. Axi-symmetric deformation : discs, tubes and spheres

Lamé’s equations (in elasticity)

2. Plane stress and plane strain

Strains

Compatibility

or (in elasticity)

V4¢ = 0 (in clasticity)

Airy Stress Function
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3. Torsion of prismatic bars

Pranddl stress function: 0y (=) = %yF- , Oy (E7) = -%’

Equilibrium: T = 2fFdA
A
Goveming equation for elastic torsion: V2F = —2Gf where B is the angle of twist per unit length.
4. Total potential energy of a body
N=Uu-w
where U = ;—J TDlgdv , W=PTy
14

and [D] is the elastic stiffness matrix.

5.  Principal stresses and stress invariants

Values of the principal stresses, op, can be obtained from the equation

Oxx — Op Oxy Oxz
Gy Oy—-0p Oy
Oxz Oyz Oz — Op

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.
Expanding: op® — Ij op2 + hop - I3

0 where I) = oxx + Oyy + O,

Oxx Oxy Oxz
Oyy Oy Oxx Oxz Oxx Oxy
L = and I = Oxy Oyy Oyz
Oyz On Oz Oz Oxy Oyy
Oz Op On
6. Equivalent stress and strain
- 1
Equivalent stress @ = '\/; (-0 + (;r-)2 + (03-01)%, .
Equivalent strain increment d ='\/§' ( 412 + dez? + de3?, 12
Yield criteria and flow rules
Tresca
Material yields when maximum value of lo] - ol loz — 03l or lo3—ayl = Y = 2k, and then,
if o3 is the intermediate stress, de) :dey:des = A(1:-1:0) where A #0.
von Mises
Material yields when, (0] — 62)2 + (02— 03)2 + (03-01)2 = 2Y2 = 6k2, and then
dgy dey dey de; —dey dey —de3 de3 —dey _3_@
o) 7 a3 G-0, = o-0 = o;-oa =*=17F
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