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1 () Show that the rate of work dissipation in the element of plane strain circular
shear fan (radius r) shown below is:

- D=2s,1vd0

Tresca material, s,

(b) The upper bound failure mechanism of a plane strain surface foundation
(width B) on uniform undrained clay (treat as a Tresca material) under combined
vertical and horizontal (V-H) loading is shown below. The mechanism comprises two
rigid zones and a shear fan. Slip at the foundation-soil interface can be ignored.

Show that the ratio of work dissipated in this mechanism to work input is: _

Work dissipated _ s B(cotb+1+7/2+20)
Work input Hcot0+V

(c¢) Calculate the load inclination, o=tan” (I-I/V ), that would cause failure by the
mechanism shown, with 6= 30°. -
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Fig. 1. Strip footing upper bound mechanism under V-H loading.

[20%)]

[50%]

[30%]
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2 A proposed building is shown as shaded below. The foundation will be an
impermeable raft at 1 m below the ground surface, exerting a net bearing pressure of 50
kPa (allowing for the weight of the excavated soil). The ground comprises over-
consolidated clay with effective unit weight, y’= 10 kN/m’. The one-dimensional
compressibility of the clay is given by:

v=15-kIng’,

where v is the specific volume, o’y is the vertical effective stress, and the
compressibility, x, is equal to 0.02.

30m
<>

B

A

>
30m

Fig. 2. Proposed building.

(a) Estimate the drained settlement at the comer of the new building (A) and at

the nearest point of the adjacent building (B), by dividing the subsoil into three layers.
[70%)]

(b) Discuss why the actual settlement at A and B may differ from these

estimated values.
[30%]
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3 An offshore jacket structure is supported by 2 m diameter steel tubular piles
driven to a depth of 20 m in normally consolidated clay. The strength profile is s,= kz,
where z is the depth below the mudline and the strength gradient, k= 1.5 kPa/m. The
piles are restrained at the head and are sufficiently far apart for interaction to be ignored.

(@) Derive an expression for the horizontal capacity of a single pile, ignoring

the possibility of bending failure.
[25%]

(b) Derive an expression for the horizontal capacity of a single pile, if failure is
by bending.
[50%)]

(c) Calculate the required wall thickness to prevent bending failure. Assume a
steel yield stress of 200 MPa.
[25%]
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4  The drag-embedded vertically loaded plate anchor (VLA) shown below is 4 m
square in plan, and is installed in a horizontal position at a depth of 20 m in uniform
clay with shear strength 50 kPa and effective unit weight 5 kKN/m’. The harness, when
pulled by the mooring line, has the dimensions (in the vertical plane) shown below.

Mooring line

Installation line

AB=4m
BC=5m
CD=1m
AD=6m

Thickness, t= 50 mm
Fig. 3. Vertically loaded plate anchor (VLA).
(a) Estimate the anchor efficiency, defined as the ratio of mooring capacity to
installation force. Assume that installation and loading are fast compared to

consolidation, and that the installation force acts through the centroid of the plate.
[70%]

(b) How might the anchor efficiency be changed if a crack extending from the

back of the anchor to the seabed remained open after installation?
[30%]
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Section 1: Plasticity theory

This section is common with the Soil Mechanics Databook supporting modules 3D1 and 3D2.
Undrained shear strength (‘cohesion’ in a Tresca material) is denoted by s, rather than c,.

Plasticity: Tresca material, Tmax = Sy

Limiting stresses
Tresca Ic, —G:,l = QT 28y

vonMises (o, =) +(0, ~p)* +(0, ~P)’ =22 = 25

g~ undrained triaxial compression strength; s,= undrained plane shear strength.
Dissipation per unit volume in plane strain deformation folIoWing either Tresca or von Mises,
8D = s,d¢,

For a relative displacement x across a slip surface of area A mobilising shear strength sy,
this becomes

D = Asyx

Stress conditions across a discontinuity:

Rotation of major principal stress

c D
0=n2-Q
Su .
Tp Sg — Sa = As = 2s,sin 0
/\ )7&?—’ g — C1a = ZSU sin®
sal O o Inlimitwith 8 - 0
A B ds = 2s,d6
“ As » Useful example:
]
= 0
| O4a 30
Q2 =n/4 ~0/2 | Cp G1B — G1a= Sy
! |
A \ T /sy = 0.87
D P=_p
/\ / 61A = major principal stress in zone A

discontinuity ¢4B = major principal stress in zone B
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Plasticity: Coulomb material (t/c’)max = tan ¢
Limiting stresses
sin ¢ = (¢’+r- o'a)/( &'t + &%) = (O4r- oa)/( G15+ a3~ 20)

where ¢’y and ¢’y are the major and minor principal effective stresses at failure, 6y and o3
are the major and minor principal total stresses at failure, and u is the pore pressure.

Stress conditions across a discontinuity

Rotation of major principal

. stress
\ 0=7) - v
D
o c1a = major principal stress
Tp in zone A
8 . - - .
‘o1 = major principal stress in

zone B
SA G C1A SB' o] c'

A tané=1p / O"D

sin Q =sin & /sin ¢’

s'e/s’a = sin(Q+3) / sin(Q - §)
Inlimit, 36 — O0Oandd — ¢’
ds'= 2s’. 0 tan ¢’

Integration gives s'g/s’s = exp (20 tan ¢’)

T@-sr!
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Section 2: Bearing capacity of shallow foundations

2.1 Tresca soil, with undrained strength s,.
Vertical loading

The vertical bearing capacity, gy, of a shallow foundation for undrained loading (Tresca soil) is:

V
—A”“— =g, =S.d.Ns, +7h

Vu and A are the ultimate vertical load and the foundation area, respectively. h is the
embedment of the foundation base and y (or y') is the appropriate density of the overburden.

The exact bearing capacity factor N. for a plane strain surface foundation (zero embedment)
on uniform soil is

Ne=2+x (Prandtl, 1921)

Shape correction factor:
For a rectangular footing of length L and breadth B (Eurocode 7):

sc=1+02B/L
The exact solution for a rough circular foundation (B/L=1) is q= 6.05s,, hence s.= 1.18~ 0.2.

Embedment correction factor:
A fit to Skempton’s (1951) embedment correction factors, for an embedment of h, is

d=1+0.33 tan™ (h/D) (or h/B for a strip or rectangular foundation)
Combined V-H loading

A curve fit to Green's lower bound plasticity solution for V-H loading is:

2
IF VIV > 0.5: v _1,14.H o _q_[2 ¥ _4
Vun 2 2 Hun Hun Vult

|f VNU“ < 0.5: H = Hun = BSu

Combined V-H-M loading

With lift-off. combined Green-Meyerhof

2 2
Without lift-off: ( v J +[ M (1 -0.3 H )] + -1=0 (Taiebet & Carter 2000)
Vult Mult Hult

&l
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2.2 Frictional (Coulomb) soil, with friction angle ¢.
Vertical loading

The vertical bearing capacity, gy, of a shallow foundation under drained loading is:

Vv \ 7B
T&"— =q; = S{N.' o +N, X

The bearing capacity factors N, and N, account for the capacity arising from surcharge and
self-weight of the foundation soil respectively. ¢’y is the in situ effective stress acting at the
level of the foundation base.

For a strip footing on weightless soil, the exact solution for Ny is:

N,= f(¢) are (Davis & Booker 1971):

Nq = tan’(n/4 + $/2) et*ta"9) (Prandti 1921)
An empirical relationship to estimate N, from N is (Eurocode 7):
Hor M/8
N1 =2 (Nq —-1)tan ‘b Failure envelope
Curve fits to exact solutions for mm"'"l '
$ i 3

Rough base: N, =0.1054e>%
Smooth base: N, =0.0663e°%
Shape correction factors:

For a rectangular footing of length L
and breadth B (Eurocode 7).

sq=1+(Bsin¢)/L
s,=1-03B/L

For circular footings assume L = B.

Combined V-H loading

The Green/Sokolovski lower bound solution gives a V-H failure surface.

Combined V-H-M loading (with lift-off- drained conditions- see failure surface shown above)

HIV,, "’+ M/BV,, 2+ 2C(M/BV,)HIVu) | _[ V. (,_ V. ’
th t thtm Vul! Vult

m

where C = tan( 2e(t, _Zttmz(th a t"')) (Butterfield & Gottardi 1994)
h*m
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Section 3: Settlement of shallow foundations

3.1 Elastic stress distributions below point, strip and circular loads

Point loading (Boussinesq solution) =
3 ' Ll
Vertical stress o, = 2P;5 ' r
i1
2 _ R
Radial stress c, = P 5 |—3r az _{-2vR
271R l_ R R+z (r.z)
P(1-2
Tangential stress Gy = ( zv) R -——z—]
2nR* |R+z R 2
2
Shear stress 2= -:f—r—% a
27R >
| | Uiy
Uniformly-loaded strip \ 5 Xt
q a
Vertical stress o, =—[a+sinc.cos(o + 25)]
T
Horizontal stress G, = q [a - sina.cos(a +28)] on
s
z) %
Shear stress T = Ysina sin(a + 25) Oy
n
Principal stresses B ¢ B
2 | 2
q
o, = S(oc +sina) oy = ﬂ(oc —-sina) 158 108 108 158 208
T T 8.:: 099 ol
Uni . | orq o
niformly-loaded circle 058 [ o6q TS N ——04q —] 058
(on centerline, r=0) g-jg \\ \\ 05q
108 — 03 1.08
Vertical stress T \ﬁq Y
3 O.Zq } \
c,=q1-| ——— 0.3q 0] \
= (1"'(3/2)2) 208 O.q\'/ ! 208
. 258 / 258
Horizontal stress /
q 2(1+v)z z° 3.08 029 3.08
o, =—|(1+2v)- + ———
h 2[( ) (az +z2 )1/2 (az +22)3/2
358 358
408 408

Contours of vertical stress below uniformiy-loaded
strip and circular areas
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3.2 Elastic stress distribution below rectangular area
The vertical stress, o, below the corner of a uniformly-loaded rectangle (L x B) is:
o= Iq

I is found from m (=L/z) and n (=B/z) using Fadum’s chart or the expression below
(L and B are interchangeable), which are from integration of Boussinesq’s solution.

1 [ 2mnvm? +n? +1 (mz +n? +2)+tan"[ 2mnvm? +n? +1 ]J

=
47| m? +n?2 +m?n? +1\ m? +n? +1 m? +n? —m?n? +1

0.28

0.26 < :
’ nzr: G / >
- 2.0

0.24 ‘f' |
. e /_,_._
Z ¥
022t— 4 o Y il :
0.20 4 —
o, =ql,
0.18 i /,é/ -t
/
0.16 0.6
Lo0.14 / / // el ojs
Ny
0.12 s — 0.4
010 //////// o3
0.08 / / // / /,—
/ 19474 /.A’ |
0.06 /,/ /,,/ - 0
- %/ /’//' = )
L L ]
0.02 %(4/ -1 e
0 "'/// 0
0.1 1 10
m

influence factor, I;, for vertical stress under the corner
of a uniformly-loaded rectangular area (Fadum’s chart)
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3.3 Elastic solutions for surface settlement

Point load (Boussinesq solution)

Settlement, w, at distance s; w(s) = 10-vP

2n G s
Circular area (radius a), uniform soil
Uniform load: central settlement: w, = a Esv)qa

edge settlement. w, = 20-v) ga -
'
Rigid punch: (Qavg= V/na?) w, = %(1 -C_;‘-V) o
Circular area, heterogeneous soil Go Gotma G
For Go=0, v=0.5:
a
w= g/2m under loaded area of any shape 7 1 m

w=0 outside loaded area

For Gyp> 0, central settlement:

gqa
W. = —l - 1
o 2G° circ /f
ga -1 = // /
Forv=05, w, » ———— 10 7
2(G, +ma) lere ,wy
102 Lz
Rectangular area, uniform soil 4

. 10° /
Uniform load, corner settlement: //
(1 - V) qB 10 ¢
W=t g
10ﬁo‘ 10°  10? 16" 1 10
Where |« depends on the aspect ratio, L/B: _ Goy/ma
L/B lrect L/B et LB rect L/B lrect
1 0.561 16 0.698 2.4 0.822 5 1.052
1.1 0.588 1.7 0.716 25 0.835 6 1.110
1.2 0.613 1.8 0.734 3 0.892 7 1.159
1.3 0.636 1.9 0.750 35 0.940 8 1.201
1.4 0.658 2 0.766 4 0.982 9 1.239
1.5 0.679 22 0.795 4.5 1.019 10 1.272
_ (1-v) YagVBL

Rigid rectangle: w, = los Where lgq varies from 0.9-0.7 for L/B = 1-10.

G 2

Note: G = where v= Poisson’s ratio, E= Young’s modulus.

E
2(1+v)
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Elastic layer of finite thickness

The mean settlement of a uniformly loaded foundation embedded in an elastic layer of
finite thickness can be found using Janbu'’s charts, for v~0.5.

1-v)gB
Wavg =P-0P'-1( G )q?

The influence factor p4 accounts for the finite layer thickness. The influence factor p,
accounts for the embedded depth.

1.0

Qs
0.9 \\ NN
0-8'_ \\\\’\\\\\
" -
® 07 NN < 200
1 L/8 -1 1.2 510 20 50
- N
05 Lt ] ﬁn S h\\\iﬁﬂ-&t
0102 05 1 2 5 10 20 50 100 1000
0/8 log scale
3.0 S A ¥
o /..-—— 100
25F
n 50
: L/8B = y’///}—f
2.0F | e 2
S 10
151 5
- - o o
o 2
1.0 —
- /
: / square ‘\L 1
- = -~
0.5 - >
o circle -
oE Ll Ly ] uu[ Ll
01 02 05 1 2 5 10 20 50 100 1000
' H/B log scale

Average immediate settlement of a uniformly loaded finite thickness layer
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Section 4: Bearing capacity of deep foundations

4.1 Axial capacity: API (2000) design method for driven piles
Sand

Unit shaft resistance: 1, =o' tané=Ko' tand <1,

Closed-ended piles: K=1
Open-ended piles: K=

Unit base resistance: go = Nq S'vo < Qb,limit

Soil Soil density Soil type | Soil-pile Limiting Bearing Limiting
category friction value ts;m  Capacity  value, Qpjim
angle, 6 (°) (kPa) factor, Ng (MPa)
1 Very loose  Sand 15 50 8 1.9
Loose Sand-silt
Medium Silt
2 Loose Sand 20 75 12 29
Medium Sand-silt
Dense Silt
3 Medium Sand 25 85 20 4.8
Dense Sand-silt
4 Dense Sand 30 100 40 9.6
Very dense Sand-silt
5 Dense Gravel 35 115 50 12
Very dense Sand

API (2000) recommendations for driven pile capacity in sand
Clay

American Petroleum Institute (API) (2000) guidelines for driven piles in clay.

= ~.

7 . \95 , \0-25
Unit shaft resistance: =5 -05. Max[( c;vo J , [C;vo) }
. u u

u

It is assumed that equal shaft resistance acts inside and outside open-ended piles.

Unit base resistance: Qo = Nc Su Nc=9.

10
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4.2 Axial capacity: base resistance in sand using Bolton’s stress dilatancy

Unit base resistance, qu, is expressed as a function of relative density, Ip, constant
volume (critical state) friction angle, ¢y, and in situ vertical effective stress, o'y.

ap {MN/m?) Qp (MN/m?)
1 3 5 710 20 1 2 3 S5 710 20 30
1
10 0.73\ ° l
N\ NP N
20 N 20 ND.7
-.U\
30 N \ i ' 30 \ | No=1
N0-SH FLNENAN
NN N NEANAEA
50 NN 50 BN
70 N A 70 T
o : 100 Anma e
(kN/m?2) ! \\ \ ¢ NN
200 ‘ \ ‘ 0 NN
- TN 20 NRARN
300 N NN 300 Ny
SINN N L
500 N\ 500 ANAYAN
; ; o
(Ao, =27° (b) ¢,y = 30
g, (MN/m2)
1 2 3 5 7 10 20 30 50
10
\0}\ \k.‘rs
20 \
N
30 \ N \
0.254 N
AR NAN Ip=1
50 N N A\,
70 ANN A
N N

2.

7, 100 m s w—
(kN/m?*) _ \j\\ \
NN

200 X \\

300 \\ \\
\\1\\\

500 NN\

(6., = 33°

Design charts for base resistance in sand
(Randolph 1985, Fleming et al 1992)

11
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Section 5: Settier;;ent of deep foundations

5.1  Settlement of a rigid pile

V., Woesa
Stiffness. G
Shaft response:

oy
E

Equilibrium:

T=T4—
r Gus w h oWk

Compatibility: ar
dw

L adery

dr

Elasticity:
1

Y

Integrate to magical ¥
radius, rn, for shaft
stiffness, ts/w.

G,

Nomenclature for settlement analysis of single piles

Combined response of base (rigid punch) and shaft:

vV . @ Q V_ _ #RusseCrase | 2™Cag B
Whead Whase W W head 1-v ¢
\") _ 2 GbaseDbas,+2nGang Vv - 2 1 _2_11:p£
WieadDG, 1-v G, D ¢ G D WheadDG, 1-vE £ D
These expressions are simplified using dimensionless variables:
Base enlargement ratio, eta 1= Rpase/R = Dpase/D Slenderness ratio L/D
Stiffness gradient ratio, rho  p= Ga,/G, " Base stiffness ratio, xi &= G/Gpase

It is often assumed that the dimensionless zone of influence, {=In(r/R) = 4.
More precise relationships, checked against numerical analysis are:

C= In{{0.5 +(5p(1-v) 4._5)@}%} for £=1: €= In{5p(1 - v)%}

5.2 Settilement of a compressible pile

2n 2n tanhpl L
yp2nlanhpt b 8
v (1-v)e "¢ uL D /cx . -
= where p=——-"— Pile compressibilit
WieeDG, 4, 1 _8n tanhpl L =75 omp y

A (1-v)§ ub D
A= E/GL Pile-soil stiffness ratio

14



	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

