ENGINEERING TRIPOS PART 1IB

Wednesday 27 April 2005  2.30to 4

Module 4F1

CONTROL SYSTEM DESIGN

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question
is indicated in the right margin.

Attachment:
Formulae sheet (3 pages).

Supplementary pages:
Two extra copies of Fig. 1 (Question 3).

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator
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1 (a) For a rational transfer-function G(s), a close relationship can be described
between the root-locus diagram and the Nyquist diagram.

(1) Write down the mapping between two complex planes which establishes
this relationship, and describe how the two diagrams are defined in terms of
this mapping. For the root-locus diagram, justify that this characterisation
agrees with the definition of the root-locus. [20%]

(ii) State and prove the rule which determines which segments of the real axis
are part of the root-locus diagram. [20%]

(iii) State the definition of a conformal mapping. State an important property of
conformal mappings, and explain the connection with breakaway points in
the root-locus diagram. [20%]

(b) Consider the plant

1

¢ =G

Sketch the Nyquist diagram and the root-locus diagrams for £ > 0 and k < 0 for G(s).
Calculate all axis crossings which are relevant in assessing closed-loop stability. Calculate
the asymptote centre and breakaway points in the root-locus diagrams. [40%]



2 (a) State the small gain theorem. An uncertain system is modelled as:
Gi(s) = (1+ A(s))G(s)

where G(s) is a known transfer function and A(s) is assumed only to be stable and to
satisfy a bound |A(jw)| < h(w) for all w. Let K(s) stabilise G(s) in a unity negative
feedback system. Derive a necessary and sufficient condition for K (s) to stabilise G1(s).  [20%]

(b) Consider a plant with transfer function

s+ 1.25 + (618 + 52)(3 + 2)
s2—1 s2—1

where the parameters §, and d, are unknown.

(i) Find a constant controller K (s) = k which stabilises the nominal plant with
01 = &2 = 0 and achieves critical damping (coincident poles) with fastest
possible decay rate for the closed-loop. [20%]

(ii) Express the uncertain plant in the form given in Part (a) and derive the cor-
responding condition for robust stability when the controller of Part (i) is
used. [15%]

(iii) Use the condition of Part (ii) to derive upper bounds on |6;| and |62| which
are sufficient to guarantee robust stability. [25%)]

(c)  The sensitivity function S(s) of a linear, single-loop control system frequently
satisfies an integral relationship which implies that |S(jw)| > 1 at some frequency w. Give
conditions on a plant where this is true for any stabilising controller which can be designed,
and give an example of a plant where it is not true. [20%]
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3 Figure 1 is the Bode diagram of a system G(s) for which a feedback com-
pensator K (s) is to be designed. It may be assumed that G(s) is a real-rational transfer
function, and that all poles and zeros have moduli which lie within the range of frequencies
shown on the diagram.

(@) (i) Sketch on a copy of Fig. 1 the expected phase of G(jw) if G(s) had no
poles or zeros with Re(s) > 0.

(ii) Determine whether G(s) has any right half plane poles or any right half
plane zeros (it doesn’t have both) and estimate their location (if there are
any).

(iii) Comment on any limitations on the achievable crossover frequency that
might be faced in a control systems design for this plant.

(b) If a constant controller K(s) = k is used, determine the number of right half
plane poles of the closed-loop system for all values of k, both positive and negative. Justify
your answer using a sketch of the complete Nyquist diagram and application of the Nyquist
stability criterion.

(c) Find a compensator K (s) to achieve the following specifications:

A: internal stability of the closed-loop;
B: a phase margin of at least 30°;

C: reduction of the effects of sensor noise on the plant output by a factor of at
least 10 at frequencies above 200 rad/s.

Show, on a copy of Fig. 1, the effect of this compensator on the open-loop transfer func-
tion.

Two copies of Fig. 1 are provided on separate sheets. These should be handed in with your
answers.

[20%]

[20%]

[10%]

[20%]
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Figure 1: Bode diagram of G(s) for Question 3.
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1 Terms

For the standard feedback system shown below, the Return-Ratio Transfer
Function L (s) is given by
L(s) = G(s)K(s),

the Sensitivity Function S(s) is given by
1
14+ G(s)K(s)
and the Complementary Sensitivity Function T (s) is given by

G()K(s)
14+ G(5)K(s)

S(s) =

T(s) =

w(s)

s G(s) —»O y(s)

K(s) — v(s)

The closed-loop system is called Internally Stable if each of the four closed-loop
transfer functions

1 G(G)K (s) K(s) G(s)
1+ G()K(s)' 1+GEIKEG) 14+GE)K(s) 14+ GE)K(s)
are stable (which is equivalent to S(s) being stable and there being no right half
plane pole/zero cancellations between G (s) and K (s)).

A transfer function is called real-rational if it can be written as the ratio of two
polynomials in s, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

K(s):aw, a>1
S + oo

achieves its maximum phase advance at w = w,, and satisfies:

|IK(jwc)l =1, and [K(jo;) = 2arctana — 90°.



3 The Bode Gain/Phase Relationship

If

1. L(s) is a real-rational function of s,

2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and

3. satisﬂe_s the normalization condition L(0) > 0.
then

LL(jwg) = % [_: -‘%; log |L(jwge")| logcoth l;—' dv
Note that
logcoth -|%l = log |Z i 2 , wWhere w = age”.
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If the slope of L(jw) is approximately constant for a sufficiently wide range of
frequencies around w = wq we get the approximate form of the Bode Gain/Phase
Relationship

. n dlog|L(jwpe®
[L(jwg) ~ © g IL(jwoe"])
2 dv

w=wp



4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in Re(s) > 0,
then if 59 = og + jwp with og > 0 '

logHGo) =~ [ 7% log H(jw)d
og H(sg) = — jo)dow
n —oocr&+(w—wo)2
and
1 [ coshvcos@
log |H(sp)| = — log |H(j|sole” )| dv
g |H (s0)] 7 J_oo sinh? v + cos2 gl (J‘“ﬂ )l

where v = log (ﬁ—') and @ = /(sg). Note that, if s¢ is real, so /sp = 0, then

coshvcos@ 1

sinh? v + cos2@® coshv’

‘We define h 0
, cosh v cos
Po(v) = —
sinh® v + cos2 @
and give graphs of Py below.
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The indefinite integral is given by

f Pg(v) dv = arctan (sinh v)

cos@

and

o]
}-r—f Py(v)dv=1 forall6.
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G. Vinnicombe
M.C. Smith
November 2002
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Extra Copy of Fig. 1: Bode diagram of G(s) for Question 3.
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