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NONLINEAR AND PREDICTIVE CONTROL

Answer not more than three questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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1 (a) Define the following terms, in the context of a dynamical system

z = f(z)

(i) Invariant set

(ii) BEquilibrium point

(iii) Stable equilibrium point

(iv) Globally asymptotically stable equilibripm point.

(b) The following equations arise in an adaptive control problem:

1 = ar] — 2173+ 2u
9 = —2z9+4+2u
z3 = bzri(z1 —z2)

If u is a non-zero constant, find the equilibrium point.

(c) By considering the function
V(z1,72,23) = bzl — 22)% + bz — w)® + (23 — 2 — 0)”

show that the equilibrium point in part (b) is globally asymptotically stableif b > 0 .
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2 (a) Figure 1 shows a negative feedback connection of a linear system with
transfer function G(s) and a nonlinear gain ¥(y), where y is the output of
the linear system. State the circle criterion for global asymptotic stability of this
feedback system, if o < ¥(y) < 8. [10%)]

(b) It is known that if G(s) is strictly positive real, and ¥(y) > 0, then
the system shown in Fig.1l is globally asymptotically stable. By considering the
transformation

- a—y
p=YT%__ B
B-v  149¥

B-a

(or otherwise), derive the circle criterion. (You may assume that the transformation
z = (z - 1)/(B — @z) maps the imaginary axis to a circle whose centre is real.) [40%)

() If G(s)=2/(s+1)%, a=0 and B =1, show that the system shown
in Fig.1 is globally asymptotically stable. [30%]

(d) Comment on the relative advantages and disadvantages of the circle
criterion and of the describing function method for analysing nonlinear feedback

systems. [20%)
+
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3 The temperature z(k) (in ° C) of a heated pool is described by the equation
z(k + 1) = 0.2z(k) + 0.5u(k) + 0.8d(k)

where k denotes the sample instant (the sampling period is 1 hour), u(k) is
the power supplied to the heating element (in kW), and d(k) is the ambient air
temperature (in ° C). Measurements of the pool and ambient temperatures are
available at each sample instant. Assume that the ambient temperature varies so
slowly that it can be considered to be constant on a given day.

(a) An unconstrained receding horizon control (RHC) law is given by u =
K(z —r) where r is the desired pool temperature, and K = —0.29 .

Show that the steady-state pool temperature is approximately 19° C
if the set-point is kept constant at r = 26° C and the ambient temperature is
d=18°C.

(b) Suppose that the RHC law is modified to u = ueo + K(z — r) where
Uco 1s a constant. Find the value of uso , as a linear function of r and d, such
that the pool reaches the desired temperature, without steady-state error, on any
given day.

(c) Suppose that the power is constrained to lie in the range 0 < u < 10
(kW), and that the pool temperature is constrained to lie in the range 20 < z < 30
(° C). For what range of ambient temperatures does there exist an admissible
steady-state input such that the steady-state pool temperature lies between these
limits?

(d) The constraints in part (c) are passed to an optimisation algorithm in
the form:

J [ Ho ] < e+ Wa(k) + Yd(k).
uy

If a prediction horizon of length 2 is used, find the matrix J and the vectors c,
W and Y, assuming that the ambient temperature remains constant over the
prediction horizon (ie ds =d(k) for s =0,1).
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4 (a) List some of the advantages and disadvantages of predictive control,

referring to an industrial application in your answer. [30%)]

(b) Consider the following open-loop stable, discrete-time system
ok +1) = Az(k) + Bu(k)
and the one-step cost
V(z,up) := ngzo + ugRuo + :E{le

where zg = z is the current, measured value of the state, and the predicted state
is given by z1 = Azg+ Bug. P, Q and R are positive-definite matrices, with
the terminal weight P satisfying the Lyapunov equation P = ATPA+Q.

For a given z, let uj(z) denote the input that minimises V/(z,wup),
and let V*(z) := V(z,uj(z)) be the minimum value.

(i) By considering V(Az + Buf(z),0) , show that [50%)
V*(Az + Bul(z)) < V*(z) forall z#0

Hint: The substitutions wg = Az + Bug(z) and w; = Awg simplify
the algebra considerably.

(i) What additional conditions on V*(z) are needed in order to be
able to claim that V*(z) is a Lyapunov function for the closed-loop
system [20%)

z(k + 1) = Az(k) + Bug(z(k)) ?
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