

ENGINEERING TRIPOS PART IIB

Tuesday 10 May 2005 9 to 10.30

Module 4M6

MATERIALS AND PROCESSES FOR MICROSYSTEMS (MEMS)

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Attachments: 4M6 Data Book (13 pages).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

- 1 (a) With the aid of a diagram, describe how silicon nitride can be deposited by low pressure chemical vapour deposition (LPCVD). [30%]
- (b) A stylus profilometer is used to measure the curvature near the centre of a crystalline silicon wafer by performing a scan over a 10 mm distance. The wafer, which has a diameter of 100 mm and a thickness of (450±50) μm, is found to be flat to within the experimental error of the measurement. A (500±10) nm thick layer of silicon nitride is deposited onto the crystalline silicon wafer by LPCVD. Figure 1 shows the result of a stylus profilometer scan over the same 10 mm distance after the deposition. The radius of curvature of the scan is 29.90 m. Calculate the intrinsic stress of the silicon nitride and include an estimate of the error in the result. State any assumptions made. [35%]
- (c) Why is it normally considered to be important that materials used in microsystems devices have a low intrinsic stress? [20%]
- (d) Explain how the intrinsic stress of silicon nitride deposited by LPCVD can be minimised. [15%]

Fig. 1

3

2 (a) Describe the following effects, and in each case explain their physical origin and why they are of interest for microsystems applications:

(i)	piezoelectric effect;	[25%]
(ii)	piezoresistive effect;	[25%]
(iii)	shape memory effect.	[25%]

(b) A 1 μm thick polycrystalline silicon film is to be used as a piezoresistor on the surface of a crystalline quartz substrate. The polycrystalline silicon is to be produced by first depositing an amorphous silicon layer by sputter coating and then crystallising this layer by heating the structure in a furnace for 6 hours at 650°C. Describe a non-destructive characterisation technique that would allow you to check that the silicon had been fully crystallised, explaining clearly how this technique distinguishes between amorphous and crystalline material.

4

- 3 (a) Under what circumstances can wet chemical processing lead to a significant reduction in device yield due to stiction? Explain the physical origin of this effect. [20%]
- (b) Figure 2 shows a silicon cantilever of length L, width $b=20~\mu m$ and thickness $h=0.5~\mu m$ that has adhered to an underlying silicon substrate over a distance d. The cantilever is suspended a distance $g=40~\mu m$ above the substrate with a contact point a distance s along the cantilever. The elastic energy U_E stored in the cantilever when deformed as shown in Fig. 2 is given by

$$U_E = \frac{Ebh^3g^2}{2s^3}$$

where E is the Young's modulus of the cantilever. The silicon-silicon surface adhesion energy γ is 0.3 J m⁻².

- (i) Explain the meaning of the *critical contact point* s^* for the cantilever system. [10%]
- (ii) By considering the total energy of the system, show that s^* is given by

$$s^* = \left(\frac{3Eh^3g^2}{2\gamma}\right)^{1/4}$$

and calculate the value of s^* for the cantilever in Fig. 2.

- (iii) How does the value of s^* affect the design of the cantilever if adhesion is to be avoided? [10%]
- (iv) Describe three other methods for reducing the likelihood of adhesion during fabrication if wet chemical etching is to be used to remove the sacrificial layer from between the cantilever and the substrate. [30%]

(cont.

[30%]

Fig. 2

4 (a) Explain what is meant by an etch stop and why it is used.

[20%]

(b) Figure 3 shows the cross section and plan view of a microcavity that will be used as the basis for producing a microscale chemical reactor chamber. The cavity is to include a metallic resistive heating element made from titanium, that will allow temperatures up to 200°C to be attained in the reactor. Give a full process flow for producing this structure starting with a bare silicon (100) wafer. State the thickness of any photoresist layers required. You may assume that all photoresist etches at the rate of OCG820PR given in Section 2.15 of the 4M6 Data Book. Briefly justify your method for each step in the process. [80%]

Fig. 3

END OF PAPER

Materials & Processes for Microsystems

Data Book 2004 Edition

http://www2.eng.cam.ac.uk/~ajf/4M6/

2

CONTENTS

3	SECT	TION 1: MATERIAL PROPERTIES
3	1.1	Crystalline silicon
4	1.2	Hydrogenated amorphous silicon
4	1.3	Polycrystalline diamond
5	1.4	Polycrystalline silicon

- 5 1.5 Silicon dioxide
- 6 Silicon nitride 1.6

CONTENTS

SECTION 2: COMMON FORMULAE & DATA 7

- 7 2.1 Doping
- 7 Thermal crystallisation 2.2
- 7 Thermal evaporation 2.3
- 8 Sputtering 2.4
- Electroplating 8 2.5
- 8 2.6 Elastic moduli
- 9 Piezoelectricity 2.7
- 9 2.8 Piezoresistivity
- 10 2.9 Microscopy
- 2.10 The Stoney equation2.11 X-ray diffraction 10
- 10
- 2.12 UV-visible spectrometry 10
- 2.13 Fourier transform infrared spectrometry 11
- 11 2.14 Photolithography
- 13 2.15 Etching

SECTION 1: MATERIAL PROPERTIES

1.1 CRYSTALLINE SILICON (C-SI)

Property	Value
Atomic weight	28.1
Atomic density	$5 \times 10^{28} \text{ m}^{-3}$
Band gap at 300 K	1.12 eV
Chemical resistance	High (resistant to most acids and some
	bases)
Density	2400 kg m ⁻³
Dielectric constant	11.8
Dielectric strength	3×10 ⁸ V m ⁻¹
Electron mobility	0.150 m ² V ⁻¹ s ⁻¹
Fracture strength	6 GPa
Hole mobility	$0.040 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Intrinsic carrier concentration	$1.45 \times 10^{16} \text{ m}^{-3}$
Intrinsic resistivity	$2.3\times10^3\Omega$ m
Knoop hardness	850 kg mm ⁻²
Lattice constant	0.543 nm
Linear coefficient of thermal expansion	2.6×10 ⁻⁶ K ⁻¹
at 300 K	
Melting point	1688 K
Minority carrier lifetime	2.5×10^{-3} s
Poisson ratio	0.22
Relative permittivity	11.8
Specific heat at 300 K	713 J kg ⁻¹ K ⁻¹ 156 W m ⁻¹ K ⁻¹
Thermal conductivity at 300 K	156 W m ⁻¹ K ⁻¹
Tempertaure coefficient of the Young	90×10 ⁻⁶ K ⁻¹
Modulus at 300 K	
Thermal diffusivity	$0.9 \times 10^{-4} \text{ m}^2 \text{ s}^{-2}$
Yield strength	7 Gpa
Young modulus	190 GPa

1.2 HYDROGENATED AMORPHOUS SILICON (A-SI:H)

Property	Value
Activation energy of conduction at	0.7 – 0.8 eV
300 K	
Chemical resistance	Fairly high (resistant to most acids and
	some bases)
Compressive Stress	-1 – 0.5 GPa
Dark conductivity	$10^{-9} - 10^{-8} \Omega^{-1} \text{ m}^{-1}$
Defect density	$10^{22} \mathrm{m}^{-3}$
Electron mobility	10 ⁻⁴ m ² V ⁻¹ s ⁻¹
Hole mobility	$2 \times 10^{-6} \mathrm{m}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}$
Hydrogen content	5 – 15 at. %
Optical (Tauc) gap	1.75 – 1.85 eV
Photoconductivity	$10^{-3} - 10^{-3} \Omega^{-1} \text{ m}^{-1}$
Photosensitivity	106
Poisson ratio	0.25
Refractive index	3.5 – 3.8
Urbach energy	50 – 60 meV
Young modulus	130 - 160 GPa

1.3 POLYCRYSTALLINE DIAMOND

Property	Value
Breakdown strength	10 ⁹ V m ⁻¹
Density	3500 kg m ⁻³
Dielectric constant	5.5
Electron mobility	$0.22 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Energy gap	5.5 eV
Hole mobility	$0.16 \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$
Knoop hardness	10 ¹⁰ kg m ⁻²
Melting point	4000° C
Thermal conductivity	2000 W m ⁻¹ K ⁻¹
Thermal expansion coefficient	8×10 ⁻⁸ K ⁻¹
Yield strength	53 GPa
Young modulus	1035 GPa

1.4 POLYCRYSTALLINE SILICON (POLY-SI)

Property	Value	
Density	2320 kg m ⁻³	
Dielectric constant	4.2	
Electron mobility	$(3-60)\times10^{-3} \text{ m}^2 \text{ V}^{-1} \text{ s}^{-1}$	
Fracture strength	0.8 – 2.84 GPa	
Poisson ratio	0.23	1 1 1 1 1 1 1 1
Refractive index	4.1	
Residual stress	Compressive	
Thermal conductivity	30 – 70 W m ⁻¹ K ⁻¹	
Thermal expansion coefficient	2.8×10 ⁻⁶ K ⁻¹	
Young modulus	160 GPa	

1.5 SILICON DIOXIDE (A-SIO)

Property	Value
Band gap at 300 K	9 eV
Density	2200 kg m ⁻³
Dielectric constant	3.9
Dielectric strength	10 ⁹ V m ⁻¹
Etch rate in buffered HF	100 nm min ⁻¹
Melting point	~1600° C
Poisson ratio	0.20
Resistivity	$10^{12} - 10^{14} \Omega \text{ m}$
Refractive index	1.46
Residual Stress	~350 MPa (Compressive)
Thermal conductivity	1.4 W m ⁻¹ K ⁻¹
Thermal expansion coefficient	0.35×10 ⁻⁶ K ⁻¹ (Thermal)
_	2.3×10 ⁻⁶ K ⁻¹ (PECVD)
Young modulus	70 GPa

1.6 SILICON NITRIDE (A-SIN)

Property	Value
Band gap at 300 K	5.3 eV
Density	3440 kg m ⁻³
Dielectric constant	7.5
Dielectric strength	10 ⁹ V m ⁻¹
Etch rate in concentrated HF	20 nm min ⁻¹
Etch rate in buffered HF	1 nm min ⁻¹
Hydrogen content	4 – 8 at. % (LPCVD)
	20 – 25 at. % (PECVD)
Melting point	3440° C
Poisson ratio	0.27
Resistivity	$10^{12} - 10^{14} \Omega \text{ m}$
Refractive index	2.01
Thermal conductivity	19 W m ⁻¹ K ⁻¹
Thermal expansion coefficient	1.6×10 ⁻⁶ K ⁻¹
Yield strength	6.9 Gpa
Young modulus	380 GPa

SECTION 2: COMMON FORMULAE & DATA

2.1 DOPING

For the case of an infinitely deep medium where $C \rightarrow 0$ as $x \rightarrow \infty$ and there is a constant concentration of impurities at the surface as a function of time, C_s , then the solution to the diffusion equation is

$$C(x,t) = C_s \operatorname{erfc}\left(\frac{x}{2\sqrt{Dt}}\right)$$
 (2.8)

For ion implantation, dopants are implanted with a Gaussian distribution,

$$N_i(x) = \frac{Q_i}{\Delta R_p \sqrt{2\pi}} \exp \left[-\left(\frac{x - R_p}{4\Delta R_p}\right)^2 \right] \quad (2.9)$$

2.2 THERMAL CRYSTALLISATION

For a material undergoing thermal crystallisation, the nucleation rate of crystallites is given by

$$N \propto \frac{1}{T} \exp \left[\frac{-\left(E_d + \Delta G_n^*\right)}{kT} \right]$$
 (3.5)

Once nucleated, crystals grow with a velocity given by

$$v \propto \exp\left[\frac{-(2E_d - \Delta G')}{2kT}\right]$$
 (3.6)

2.3 THERMAL EVAPORATION

For a material undergoing thermal evaporation, the flux of atoms evaporating per second, F, is given by

$$F = N_0 \exp\left(\frac{-\Phi_{\epsilon}}{kT}\right)$$
 (5.1)

where N0 is a slowly varying function of temperature and Φ_e is the activation energy required to evaporate one molecule which is related to the enthalpy of formation of the evaporant, H, by

$$\Phi_e = \frac{H}{N_A} \tag{5.2}$$

The deposition rate at a distance d from the source is

$$R \sim \frac{\cos \beta \cos \theta}{d^2} \tag{5.3}$$

2.4 Sputtering

The Sigmund expression for sputter yield is

$$S \propto \frac{eE}{Ua\{M_i/M_i\}} \tag{5.4}$$

where U is the heat of sublimation of the target material, a is a near linear function of (M_i/M_t) , M_i is the ion mass, M_t is the target atom mass, E is the ion energy and e is the momentum transfer function which for elastic collisions is given by

$$e = \frac{4M_i M_t}{(M_i + M_t)^2}$$
 (5.5)

2.5 ELECTROPLATING

From the Faraday Law of electrolysis, the mass of metal deposited per unit area per unit time, M, is given by

$$M = \frac{JA}{zF} \tag{5.11}$$

where, assuming 100% current efficiency, J is the current density due to metal ions, A and z are the atomic weight and valency of the metal respectively and F is the Faraday constant, which is 96500 C.

2.6 ELASTIC MODULI

For an anisotropic *cubic* material, we may still calculate the Young modulus in an arbitrary crystallographic direction from the compliance coefficients,

$$E = \frac{1}{S_{11} - (2S_{11} - 2S_{12} - S_{44})(l_1^2 l_2^2 + l_2^2 l_3^2 + l_1^2 l_3^2)}$$
 (6.8)

Additionally, we may gain an estimate of the Young modulus for a polycrystalline cubic material from the complaince coefficients by averaging equation (6.8) over all directions

$$\overline{E} \approx \frac{1}{0.6S_{11} + 0.4S_{12} + 0.25S_{44}}$$
 (6.9)

The Poisson ratio for any normal plane in an anisotropic cubic material is

$$\nu = -E \left[S_{12} + \left(S_{11} - S_{12} - \frac{S_{44}}{2} \right) \left(l_1^2 m_1^2 + l_2^2 m_2^2 + l_3^2 m_3^2 \right) \right]$$
 (6.11)

The Shear modulus is dependent on the Young modulus and Poisson ratio

$$G = \frac{E}{2(1+\nu)} \quad (6.22)$$

The Bulk modulus is given by

$$K = \frac{E}{3(1 - 2\nu)} \quad (6.27)$$

2.7 PIEZOELECTRICITY

For piezoelectric materials,

$$D = d\sigma + \varepsilon_0 \varepsilon_r \Big|_{\sigma} E \qquad (6.33a)$$

$$D = e\varepsilon + \varepsilon_0 \varepsilon_r \Big|_{\varepsilon} E \qquad (6.33b)$$

and the electromechanical coupling coefficient is given by

$$k = \sqrt{\frac{de}{\varepsilon_0 \varepsilon_r \big|_{\sigma}}} \quad (6.35)$$

2.8 PIEZORESISTIVITY

For piezoresistive materials, the Ohm Law becomes

$$\mathbf{E} = [\mathbf{\rho}_{\mathbf{o}} + \mathbf{\Pi} \cdot \mathbf{\sigma}] \cdot \mathbf{J} \tag{6.38}$$

For a cubic material, such as silicon, once again the situation is simplified. The resistivity term becomes a simple scalar. We use the same numbering system for the stress tensor, so that

$$[x, y, z, yz, zx, xy] \Leftrightarrow [1,2,3,4,5,6]$$
 (6.39)

The field-current relationships, given the symmetry of the cubic system, become

$$\frac{E_{x}}{\rho_{e}} = \left[1 + \pi_{11}\sigma_{x} + \pi_{12}(\sigma_{y} + \sigma_{z})\right]J_{x} + \pi_{44}(\tau_{xy}J_{y} + \tau_{xz}J_{z})$$

$$\frac{E_{y}}{\rho_{e}} = \left[1 + \pi_{11}\sigma_{y} + \pi_{12}(\sigma_{x} + \sigma_{z})\right]J_{y} + \pi_{44}(\tau_{xy}J_{x} + \tau_{yz}J_{z}) (6.40)$$

$$\frac{E_{z}}{\rho_{e}} = \left[1 + \pi_{11}\sigma_{z} + \pi_{12}(\sigma_{x} + \sigma_{y})\right]J_{z} + \pi_{44}(\tau_{xz}J_{z} + \tau_{yz}J_{y})$$

Where the three independent coefficients from the fourth rank piezoresistive tensor are

$$\rho_{e}\pi_{11} = \Pi_{1111}$$

$$\rho_{e}\pi_{12} = \Pi_{1122} \quad (6.41)$$

$$\rho_{e}\pi_{AA} = \Pi_{2323}$$

Change in resistance due to the piezoresistivity effect is given by

$$\frac{\Delta R}{R} = \pi_l \sigma_l + \pi_t \sigma_t \qquad (6.42)$$

Where σl and σt are the longitudinal and transverse stress and πl and πt may be determined from the piezoelectric coefficients using the transformation

$$\pi_{l} = \pi_{11} - 2(\pi_{11} - \pi_{12} - \pi_{44})(l_{1}^{2}l_{2}^{2} + l_{1}^{2}l_{3}^{2} + l_{2}^{2}l_{3}^{2}) \quad (6.43a)$$

$$\pi_{r} = \pi_{12} + (\pi_{11} - \pi_{12} - \pi_{44})(l_{1}^{2}t_{1}^{2} + l_{2}^{2}t_{2}^{2} + l_{3}^{2}t_{3}^{2}) \quad (6.43b)$$

2.9 MICROSCOPY

For a simple optical system comprising an objective and condenser, it can be shown that the resolving power is given by

$$\delta = \frac{C\lambda}{\eta \sin \alpha} \qquad (8.2)$$

In an electron microscope, the electron wavelength is given by the de Broglie equation,

$$\lambda = h/p \tag{8.3}$$

2.10 THE STONEY EQUATION

The Stoney equation states that

$$\sigma = \frac{E}{6(1-\nu)} \frac{t_s^2}{t} \left(\frac{1}{R_c} - \frac{1}{R_0} \right)$$
 (8.7)

2.11 X-RAY DIFFRACTION

The Bragg equation for diffraction states that constructive interference will only occur when

$$n\lambda = 2d\sin\theta$$
 (8.8)

For a given set of planes $(h \ k \ l)$ in a cubic unit cell with side lengths a, b and c, the plane separation in equation 8.8 will be given by

$$\frac{1}{d^2} = \frac{h^2}{a^2} + \frac{k^2}{h^2} + \frac{l^2}{c^2}$$
 (8.9)

The structure factor, Fhkl, the modulus of which gives the amplitude of the wave diffracted by a particular set of planes, and is given by

$$|F_{hkl}| = \sum_{1}^{N} f_n \exp[2\pi j(hu_n + kv_n + lw_n)]$$
 (8.10)

Table 4.1 Diffraction peaks observed and not present in some common bravais lattices.

Bravais lattice Simple Base centred Body centred	Diffraction present	Diffraction absent				
Simple	All	None				
•	h and k not mixed	h and k mixed				
Body centred	(h+k+l) even	(h + k + l) odd				
Face centred	h, k and l not mixed	h, k and l mixed				

2.12 UV-VISIBLE SPECTROMETRY

The absorption coefficient, α , of a material may be determined as a function of photon energy,

$$%T = (100 - %R) \exp(-\alpha t)$$

$$\alpha = \frac{-1}{t} \ln \left(\frac{\%T}{100 - \%R} \right)$$
 (8.13)

2.13 FOURIER TRANSFORM INFRARED SPECTROMETRY

The size of the absorption peaks provide a rough guide to elemental composition (±1 at. %),

$$C = -K_A \int \frac{\ln(\%T/100)}{kt} \partial k \qquad (8.14)$$

Wavenumber (cm ⁻¹)	Bond	Vibrational mode type
460	Si-O ₂	Rock
630	Si—H	Bend
630	Si—H ₂	Rock
630	Si—H ₂	Rock
630	Si-H ₂	Wag
805	Si-O2	Bend
820	Si—Ha	Twist
840	Si-N	Stretch
860	Si—H	Bend
880	Si—H ₂	Bend
905	SiH-	Bend
920	Si—O	Stretch
1080	Si-O ₂	Stretch
1150	N—H	Bend
2000	Si—H	Stretch
2090	Si—H ₂	Stretch
2140	Si—H.	Stretch
3350	N—H	Stretch

2.14 PHOTOLITHOGRAPHY

The empirical expression for photoresist thickness is

$$t = \frac{KC^{\beta}\eta^{\gamma}}{R^{\alpha}} \qquad (9.2)$$

where C is the polymer concentration in g per 100 ml, h is the intrinsic viscosity, R is the number of rotations per minute, K is a calibration constant and α , β and γ are resist-dependent constants.

For positive resists, contrast is given by

$$\gamma = \frac{1}{(\log D_P - \log D_P^0)} = \left[\log \frac{D_P}{D_P^0}\right]^{-1}$$
 (9.3)

whilst for negative resists

$$\gamma = \frac{1}{(\log D_{g}^{0} - \log D_{g}^{i})} = \left[\log \frac{D_{g}^{0}}{D_{g}^{i}}\right]^{-1}$$
 (9.4)

The resolution for shadow printing using a conventional resist of thickness z and with a print gap between the mask and the resist surface of s is given by

$$R = \frac{3}{2} \sqrt{\lambda \left(s + \frac{z}{2}\right)} \tag{9.5}$$

whilst for a projection printing system,

$$R = \frac{k_1 \lambda}{N} \tag{9.6}$$

where

$$N = n \sin \theta_{\text{max}} = \frac{D}{2F} \quad (9.7)$$

2.15 ETCHING

	Etch Rates for U.C. Berkeley M.	Microna	chising	and IC Pr	oceaning locksies	(A/min) Actual	V. 4.4	29 July Kin R. W	1996 Miner							
	The top etc	Trule Water	Charge	by the se	abor with	(seeb ac	Indone e	can chan	-								
The center and bottom values are the lo	w and lugh eich m	er observ	nd by the	mather no	d others	in the UC	B Microl	ab uting	bos den) TAM	ERIAL	tions, clear	and dies	y" chamk	en ric.			
ETCHANT			-			-	. ==		-			· · · ·	-		_		
EQUIPMENT CONDITIONS	TARGET MATERIAL	SC Si <100>	Poly	Poly undop	Wet	Day	LTO uodop	PSG	PSG	Stoic	Low-o Nitrid	AV 2% Si	Sput	Spot	Speet Ti/W	OCG 820PR	Olic
Concentrated HF (49%)	Silicon	-	0	- Numer	23k	F	>14k	P	annid_	Nitrid 140	52	12	40		17.4	PO	-
Wet Sink	oxides	1 1			18k						30	U				• •	ľ
Room Temperature 10:) HP	Silicon		7	0	23k 230	230	340	15k	4700	- 11	<u>52</u>	42 2500	-	lik	<70	0	-
Wet Siak	oxides			_					7/00	"		2500	١١١	***	170		
Room Temperature 25:1 HF	Silicon		0		97	95	150	w				12k					
Wet Sink	oxides		٠	۰	"	73	130	w	1500	6	1	w	0	•			
Room Temperature																	
S: I BHF Wat Sink	Silicon oxides	-	9	2	1000	1000	1200	6800	4400 3500	9	4	1400	020 025	P	1000		
Room Temperature	I				1080				4400		4		20				
Phosphoric Acid (85%)	Silicon nitrides	-	7	•	0.7	0.8	<1	37	24	28	19	9800		•		550	,
Heated Buth with Reflux	nunces								24	28 42	19 42		l i			l	1
Silicon Etchant (126 HNO ₃ ; 60 H ₃ O : 5 NH ₄ P)	Silicon	1500	3100	1000	87	w	110	4000	1700	2	3	4000	130	3000		0	_
Wet Sink			1200												1	1	
Roses Temperature KOH (1 KOH : 2 H,O by weight)	<100> Silicon	14k	6000 >10k	-	77		94	W	380	-	0	F	-			F	-
Honed Stirred Bath	Januar State of State	'		'	41		~ '	"	,	"	ا	[ا ۱		٠.	١ '	
80°C					77												_
Aluminum Etchant Type A (16 H,PO ₄ : 1 HNO ₅ : 1 HAc: 2 H ₂ O)	Alumnium	-	<10	4	0	0	0	-	<10	0	2	6600	•]	0		0	
Hestod Bath 50°C					ı				ĺ			2600 6600				1	
Transiero Eschent (20 H ₂ O : 1 H ₂ O ₂ : 1 HF)	Titanium	-	12	·	120	w	W	W	2100	8	4	W	0	8800		0	\vdash
Wot Sink)	1		'			۱ '	1				0		1		1
Room Temperature	Tyngsten		-	-	-		0	-	0		0	<20	190		60	-	┝
H _y O ₂ (30%) Wat Sink	· sengaren	-	"	ا ا	ľ	"	١		١	"	"	استا	190	ا ا	80	"	1
Room Temperature							L						1000		150		L
Pintelia (~50 H ₂ SO ₂ : 1 H ₂ O ₂)	Cicening off		0	0	0	0	0	٠.	0	0	0	1800	-	2400	-	F	"
Florical State	metals and organics		1)		\			ĺ							1	l
Acetone	Photoresist		0	0	0	0	0		0	0	0	0		0		>44k	>
Wet Sink			1	l	1	1	ļ	ł	ļ	1						l	1
Room Temperature CF,+CHF,+He (90:30:120 spcm)	Silicon	w	1900	2100	4700	w	4500	7300	6200	1800	1900	 	w	W	w	2200	2
Lara 590 Plusma	oxides		1400	1500	2400			3000	2500		12				"		-
450W, 2.8T, gap=0.38cm, 13.56MHz			1900	2100	4900			7300	7200							<u> </u>	L_
CF ₄ +CHF ₃ +He (90:30:120 soem) Lam 590 Plasma	Silicon	w	2200	1700	2500	w	6400	7400 5500	6700 5000	4200 4000	3800	٠.	W	w	w	2600 2600	2
850W, 2.8T., gap=0.38cm, 13.56MHz	ORNAES		2700	2100	7600		6400	7400	6700	6800	l					6700	7.
SF ₄ +He (13:21 sorm)	Silicon	300	730	670	310	350	370	61D	480	820	620		w	W	W	690	
Technics PE II-A Planms	gitrides	300	730	670 760	l		l	1	230		530	l		1	l	690	
100W, 250mT, gap=2.6cm, 50kHz sq. wave CF,+CEF,+He (10:5:10 socm)	Silicon	1100	1900	760 W	730	710	730	W	480 900	1300	1100	-	w	w	w	830 690	١,
Technics PE II-A Plasma	aitrides			1 "		'''	.~	٠.			,,,,,,	! .	- "	"	,	"~	`
200W. 250mT. pap=2.6cm. 50kHz sq. wave					<u> </u>											<u> </u>	_
SF ₄ +He (175:30 seem)	Thin	w	6400	7000	300 220	W	280	530	540	1300	870	-	w	w	w	1500	1
Lam 480 Pissma 150W, 375mT, gapwi 35cm, 13.56MHz	silicon nitrides	ļ .	1	7000	400	1	ł	1		830 2300	ţ	1	1			1500	i
SF_+He (175:50 accm)	Thick	w	8400	9300	800	W	770	1500	1200	2800	2100	-	W	W	w	3400	3
Lam 480 Plasma	silicon	l	1				l		1	2100	l	1			l	3100	1
250W, 375mT, gap=1.35cm, 13.56MHz SF, (25 socm)	nitrides Thin	w	1700	2800	1100	w	1100	1400	1400	2800	2300		w	w	W	3400	13
Tensi laline Placua 701	silicon				1100	"				2800		1	"		"	2900	1 -
125W, 200mT, 40°C	nitrides				1600	<u> </u>	L			2800						3400	_
CF ₄ +CHF ₃ +He (45:15:60 scom)	Si-rich stlicon	w	350	360	320	w	320	530	450	760	600		W	w	w	400	Г
Tegal Inline Plasma 701 100W, 300mT, 13.56MHz	nitrides	ii i		i		İ	l	ł		ĺ	1		l			l	1
C1,+He (180:400 accm)	Silicon	w	5700	3200	K	·	60	230	140	560	530	w	W		·	3000	2
Lam Rainbow 4420 Plasma	l	5000	3400	3200	8	l	l	l	1	1	ł	1	1		!	2400	1
275W, 425mT, 40°C, gap=0.80cm, 13.56MHz HBr+Cl, (70:70 seem)	Silicon	5000 W	450	3700 460	380	├	0	0	0	870	26	w	W		├	3000	+
Lam Rainbow 4420 Plasem	3-2-2-		450	1	1	1	"	"	"		-	. "		1	1	350	1
200W, 300mT, 40°C, gap=0.80cm, 13.56MHz	ļ	ļ	740		10	<u> </u>						L	<u> </u>	<u> </u>		500	1_
Cl,+BCl,+CHCl,+N, (30:50:20:50 accm)	Aluminum	w	4500	w	680	670	750	W	740	930	860	6000	W		1 .	6300 3700	3
Lam 690 RIE 250W, 250mT, 60°C, 13.56MHz		1	1	1	1	1	į	1	1	l	l	6400	1	1	l	6300	1 2
250 W. 250 W. 1. 105 C. 1350 W. 12 SF ₄ (80 secm)	Tungsten	w	5800	5400	1200	W	1200	1800	1500	2600	2300		2800	w	w	2400	1
Total Inline Planton 701	1	11	1	1	2000	1	1	1	1	1	1900	1	2800		1	2400	
200W, ISOmT, 40°C, 13.56MHz	Description :	 	0	1 0	2000	-	-	-	0	0	2300	-	4000	0	├	4000 350	╁
O ₂ (51 secss) Technics PE 11-A Plusma	Descumming photoresist		"	ا "	1 "	Ι,		"	"	"	1 "	1	١ "	1	Ι.	"	1
SOW, 300mT, gap=2.fcm, 50kHz sq. wave	İ	L								<u> </u>			<u> </u>				1
O, (51 seem)	Ashing		0	0	0	0	0	0	0	0	0	0	0	0	-	3400	T
Technics PE II-A Planma	Photoresist	ll	1	1		1		1	1	Į .	l	1	1			1	1
400W, 300mT, pap=2.6cm, 50kliz sq. wave HF Vapor	Siticon	 .	0	-	660	W	780	2100	1500	10	19		-		+ -	PO	+
1 cm over plastic dish	oxides	11	1	1		"	"	1		"	1	1 "	1	"		1	1
Room temperature and pressure	Silicon	4600	1	1800	-		-	0	1 0	120	1 2	0	800	290	+	1 0	+-
XeP,	Silicon	2900	1100	1100		1 .	1 6	۱ ،	1 0	120	2	1 "	440	50	1 .	1 "	1
Simple custom vacuum chamber	1	100k	2500	2300	1	1	1	1	1	180	2	1	1000	340	1	1	1
Room temperature, 2.6 Torr															<u> </u>		

