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1 (a) (i) Along the nozzle centre-line the flow is near-isentropic. With respect to the
local flow velocity, the molecular velocity distribution will be very close to M-B and the N-S
equations will hold locally. In terms of the streamwise molecular velocity component C; the
distribution will be symmetrical around the speed V.

(i) A point in the wall BL where the velocity is 0.1V will be many mean-free paths from
the wall and the flow there will be in the continuum regime. The viscous shear stress
associated with the wall-normal velocity gradient is equivalent to a transport of streamwise
molecular momentum towards the wall. To generate this momentum flux, the velocity
distribution will be perturbed from M-B. The perturbation will not be too great and the N-S
equations will be locally valid. In terms of the wall-normal molecular velocity component C,
the distribution will be slightly skewed. The mean value of C, will be zero.

(ili) Very close to the wall, the velocity distribution will deviate strongly from M-B and the
N-S equations will not hold locally. Molecules coming from the bulk of the gas (negative
C») will have a distribution similar to that described in (ii), while reflected molecules
(positive C;) will have a ‘half-Maxwellian’ distribution if the reflection is diffuse. In terms
of the wall-normal molecular velocity component C, the distribution will be discontinuous.
The mean value of C, will be zero.

(b) (i) Making the substitution,
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The mean translational kinetic energy of a molecule is then given by,

_ ]

0

2 © ‘
{"f Jge(C)dC - 4 [x* exp-xyax = 4KT 3w _ 3kT
0

Jr e 8 2

where the 34/ / 8 comes from the Table of Integrals for n = 4.
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(i) Fraction of molecules with translational KE less than the mean is given by,
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2Xpe 0
= -0+ erf(X,) [Definition of erf in second Table]
Jz
= - 0.3084 + 0.9155 [erf(+/1.5) =0.9155 by interpolation]
= 0.6071 [Fraction of molecules with translational KE less than 3k77/2] [30 %]

(iii) The mean square deviation of the KE from the mean value is given by,

(KE-KE)*> = (KE)*> - 2(KE)(KE) + (KE)® = (KE)* - (KE)?

The mean of the square of the translational kinetic energy is given by,
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where the 157 / 16 comes from the Table of Integrals for » = 6. Hence,
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Assume molecules make their last collision at £= A before striking the wall. The velocity is
extrapolated through the strongly non-equilibrium F-M region and the velocity gradient is
therefore constant. Hence, the x-momentum flux incident on the wall is,

Assuming diffuse reflection, the x-momentum flux reflected from the wall is M, = 0, and so
the net x-momentum flux to the wall is,
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In the continuum region the net momentum flux is equal to the shear stress. Hence,
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Equating the momentum fluxes gives,
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From which (as =R —7r),
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As the flow is incompressible, the momentum fluxes entering and leaving the control
volume are equal. Applying the force-momentum principle gives,
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We now make the continuum approximation for the shear stress giving,
du rdp
# dr  2dx

This is valid across the tube if we apply the slip boundary condition (compensating for the
Knudsen layer near the wall). Hence, integrating with respect to  subject to u = uy;, at ¥ = R,
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At the tube wall,
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Thus, the velocity distribution is given by,
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If pis the density, the mass flowrate is,
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The continuum result is obtained by setting Kn = 0. Hence,
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Q3
(a) S is the entropy of a system in J/K (or units consistent with k)
k is Boltzmann’s constant, 1.38x10™* J/K

Q is the number of microstates of the system consistent with the constraints.

(M )
Ql QZ

Consider a system composed of two subsystems (1) and (2) as shown above. The
total number of microstates available to the composite system is:

Q=0Q xQ,
S=kinQ=FkIn(Q, xQ,)
=kInQ, +kInQ,
=85 +5,
i.e., the entropy of the composite system is the sum of the entropies of the tw [25%)]

subsystems: extensive.

(b) Let AS be the entropy change (which will be —ve) in going from the equilibrium to the
perturbed state. Then,
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but since the system is isolated, ¢, AT, + ¢,AT, =0. Thus,
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where subscript 2 denotes the perturbed state and subscript 1 the equilibrium state. The
relative probability of the system being found in state 2 is thus:
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i.e., very small.

Even such a small fluctuation is vanishingly improbable. [45%]

(c) n+n,+n,=E/hv

i.e., a plane normal to (1,1,1)"

nl n2

No. of available states = volume contained between two planes
= (1/6)x {(Eo/hv)’ — (E\/hv)*}
= (1/6)x{(1.001x10°%/6.626x 102y’ — (1x10°%/6.626x10%)*}
= 1.72x10% states.

[30%]
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(@)

(b)

2
per unit mass: ¢,=C,/Nm=c,,+c,, = R{E + [E) gexp(0/T) }

(i) For H;, the characteristic temperature of rotation is relatively high (87.5K) due to
the low moment of inertia of hydrogen molecules. Thus at very low temperatures,
only the translational energy modes are excited. Assuming the Boltzmann limit still
applies to these modes (doubtful) the specific heat capacity is ¢, = 3R/2 in this region
(3 translational degrees of freedom). The rotational energy modes become excited
once the temperature is of the order of the characteristic temperature, so ¢, increases
and tends towards SR/2 at around room temperature (3 translational + 2 rotational
degrees of freedom). At very high temperatures, the vibrational energy modes
become excited such that ¢, tends towards 7R/2 (3 translational + 2 rotational + 2
vibrational degrees of freedom), though dissociation becomes significant at such
temperatures.

(1) Atlow temperature: ¢y =3R/2=1.5%8315/2=6.24 kJ/kgK
y=(c, +R)/¢c,=5/3=1.67

At room temperature: ¢y =5R/2=2.5x%x8315/2=10.4 kJ/kgKk
y=(y+R)/c,=T7/5=1.40

At high temperature: ¢y =TR/2=3.5x8315/2=14.6 kl/kgK
y=(,+R)/c,=9/7=1.29

(iii) For O,, the characteristic temperature of rotation is very much lower (2.08K) so
the low temperature plateau does not exist. (The vibrational temperature is also much
lower, but this is not required in the answer). The two constant ¢, regimes for O, will

be at 5R/2 and 7R/2, though of course R will be much lower. [40%)]
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where 0=¢/k is a characteristic temperature for electronic excitation.



(i) A detailed plot is not required. The main points to include are that the
contribution to ¢, from electronic excitation disappears at low and high temperature
and that there is thus a maximum in between. These points are evident from the
expression for Z.
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