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3. (a) A two-axled vehicle with rigid suspension and tyres travelling along a sinusoidal profile
of wavelength A will experience pure bounce motion if a whole number of wavelengths

nA fit within the wheelbase L (distance between front and rear axles). If there is a whole
number plus a half wavelengths (n+0.5)1 in the wheelbase L then the vehicle exhibits
pure pitch motion and no bounce. The corresponding excitation frequencies f* depend on
vehicle speed 7 according to V' = fA . Thus the frequencies at which there is strong bounce

excitation can be calculated using fpounce = #V/L, and the frequencies at which there is
strong pitch excitation are given by [, = (n+0.5) /L. For a vehicle with suspension, the

wheelbase filtering leads to the vibration response of the sprung mass being strongly
dependent on the speed of the vehicle.

(b) Simplify the model by eliminating the unsprung masses (they contribute little to the
sprung mass modes of vibration), and add the tyre and suspension stiffness in series:

At the front the series stiffness is kg = 7 ! = ! ] =20.6AN/m

ky kg 23 200

At the rear the series stiffness is k) = 1 ! = ! = 23.8kN/m
e
ky kyp 27 200

The sprung mass bounce natural frequency is then

| [kgthsy _ 1 [206e3+23.8€3
- R | SLAL 2 =1.19H:
In_bounce 27 m 2 800 z

The pitch stiffness about the centre of mass is given by

r =kga® +kyb? =20.6e3(1.35)° +23.8¢3(1.55)° = 94.8kNm/ rad
so the sprung mass pitch natural frequency is

1 |z 1 [94.8¢3
tch = o == =1.33H
In_ pitch 27:\E 2z \ 1350 g

(c) The transfer functions in Fig. 2 are for road velocity input and sprung mass acceleration
output, so compared to the Mechanics Data Book case (¢), the magnitudes of the transfer
function will be scaled by jw. Thus we expect zero response at zero frequency and a flat
response at frequencies above the resonance frequency. This can be seen as the constant
height of peaks at frequencies above the sprung mass resonant frequencies (1-2Hz) and before
the unsprung mass modes come into play at about 10Hz.




Next, consider the effect of wheelbase filtering using the information given in the answer to
part (a). Calculate the frequencies at which there is strong bounce excitation and weak pitch

excitation (whole number of wavelengths in the wheelbase) fpounce =nV/L:

Table 1
n 0 1 2 3
V=10m/s 0 Hz 3.5Hz 6.9 Hz 10.4 Hz
| V=30m/s 0Hz 10.4 Hz 22.4Hz

These frequencies clearly match the ‘troughs’ observed in the pitch transfer functions.

Calculate the frequencies at which there is strong pitch excitation and weak bounce excitation

(whole number plus a half wavelengths in the wheelbase) ficn = (n+0.5W/L:

Table 2
n 0.5 1.5 2.5 3.5
V=10m/s 1.7Hz 52 Hz 8.6 Hz 12.1 Hz
V=30m/s 52 Hz 15.5 Hz 259 Hz

These frequencies clearly match the ‘troughs’ observed in the bounce transfer functions.

In the region of the sprung mass natural frequencies at about 1Hz to 1.5Hz, the strong pitch
response (and small bounce response) at 10m/s is explained by the proximity of the sprung
mass natural frequencies to the 1.7Hz frequency in table 2. The strong bounce response (and
small pitch response) at 30m/s is explained by the proximity of the sprung mass natural
frequencies to OHz in table 1.

The unsprung mass modes of vibration are at approximately

Lok L 208 o 6p
2e\m, 27m\ 45

The road to sprung mass transfer functions generally reduce in magnitude above this
frequency because the unsprung masses act to filter the excitation from the road.

(d

¢ Optimum values of stiffness and damping are likely to depend on speed, due to the
wheelbase filtering mechanism. The engineer will need to consider performance at a
range of speeds and decide a suitable compromise. Alternatively a suspension that can
adapt its damping and/or stiffness with vehicle speed might be considered.

¢ The engineer will need to decide how to weight the pitch and bounce acceleration
responses. It is common practice to minimise pitch at the expense of bounce, but there
is still much to understand in this area. Most engineers rely heavily on subjective
testing of the vehicle.

¢ The pitch plane model neglects lateral and roll degrees of freedom. Generally
accelerations in these directions are small. Low vehicle speeds (when lateral tyre
stiffness is significant) and/or discrete inputs from the road (which may have
significant roll component) might require a lateral-roll plane model.



4 (a) See lecture notes. Considering steady-state lateral behaviour of the tyre, slip angle is ¢,
so sideslip velocity is oV. Side force F is slip angle o times cornering stiffness C. So
equivalent lateral damping ciy¢ is that which gives force F= aC at sideslip velocity oV, thus

ca=aClaV=C/V.

(b) At very low speed, ¢y becomes very large, so assume it becomes rigid. Newton’s 2nd law
on the inertia:

10+ b0+ 170 — mhy = 19 + bp
Newton’s 2nd law on the mass
my+k,y=—k,ho

In matrix form:

[g _:h] {i} +[3 8] {inh kOHi} =[S]¢ J{z]”;

For zero damping and free response:

B R R

Laplace transform, zero initial conditions, and replacing s with jo gives

-

Non-trivial solutions given when:

10" mho® | _ 0
klmh klal _ma)2
or
a)4m1~a)2(mr +kpped + mhzklat)+ Ky =0 (1)



(c) From Fig. 2b, suitable values for the simple model are:

m =800 kg
=460 kg m”
h=0.5m
2 2
o 2T 2X0757 59 35kNm/rad
1 i 1
— +
k, "k, 20063 303
Fiat = 400 KN/m

Putting these values into (1) and solving for o gives natural frequencies of @; = 1.05 Hz and
=432 Hz.

(d) At very high speed the lateral tyre damping tends to zero. Equation (1) is applicable if the
lateral stiffness term ky, is set to zero. The equation then becomes

2

o ml—0*mr=0

Solutions are w1 =0 and w, = \/——;: . The zero frequency mode is a ‘rigid body’ mode, and

indicates that the vehicle will readily adopt a lateral displacement after the application of an
external lateral impulse, such as sidewind gust.

The roll mode natural frequency at w, (=1.27 Hz) may not be observed in measured responses
of the sprung mass roll motion, because at high speed the roll input from a randomly rough
road surface at this frequency is very small compared to the vertical input.





