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1. (a) Since ® has 2 columns, the number of states is n = 2.
The number of elements in X is the same as the number of rows of @, which is 6. But each z; in X

has 2 elements, so the prediction horizon is (=6/2).

(b) Predictions are given by

x1 = Axg+ Bug (1)
xz9 = A(Axo+ Bug) + Bu; = A1y + ABug + Buy (2)
T3 = A(A2a:0 + ABug + Buy) + Bug = A3z + A?Bug + ABuy + Bus 3)

which can be collected together as

T A B 0 0 Up
o = A? To + AB B 0 U1 (4)
T3 A3 A2B AB B Uug
Hence, from the given ® and T,
3 |21 34 2 | 13 |3
A‘[34 55]’ AB_[zl]’ AB”[5] ®)

(e} z1 £ [ } ] is equivalent to Az + Bug < [ } ]

From part 1b and the given data we have A = [ ; g ] and B = [ i ] . So the constraint z; < [ } ]

1o = [1] o
][ 3]

(since xzo = z(k)) which is equivalent to the constraint given in the question.

(d) -1 < Auy, 2= -1 <4y —us—1 < 2 which is equivalent to

is equivalent to

IA

Us — Us—1 < 2
1

—Us + Us—1 S



Hence

Ug—U_1 < 2
—ugtu_g < 1
U1 — Ug S 2
—up+u <1
ug—u3 <2
—us+u < 1
which is the same as _ - L _ _
1 0 0 2 1
-1 0 0 1 -1
-1 1 0 2 0
1 -1 0 US| 1] o |®t (6)
0 -1 1 2 0
| 0 1 -1 ] [ 1] | 0 |

This corresponds to the top 6 rows of the given constraints, so by comparing corresponding elements
weget[a:2, b:1,c=—1,d=ﬂ.

We have not yet considered the constraint [1, 0Jzy < 2. Since N = 3, and using results from part
1b, this is the same as

[1, 0](A3zo + A2Bug + ABuy + Buy) < 2 (7)
or (again using results from part 1b)
[21, 34]1:() + 13ug + 3ur +ug < 2 (8)

Comparing this to the 7th row of the given constraints, and using the fact that we already know
a =2, we see that |e = 13, f =3, g = —21, h = —34]




2. (a)

(b)

()

The assumption that d is constant can be expressed as d(k + 1) = d(k). Hence the given system can

be expressed as
ey ] = [0 ][ 8 ]
yky = [C o][zgm

We are told that A is stable. Since [ ‘61 l; J is block-diagonal, its eigenvalues are those of A and

those of I, which are all at 1 (repeated m times, where m is the dimension of d — same as dimension
of u). But we are told that A is stable, so the only eigenvalues on or outside the unit circle are
located at 1, ie A = {1}. So the detectability criterion can be applied to the augmented system with
A=1.

So, using the detectability criterion given in the question, the augmented system is detectable if and

only if B
b

has full column-rank. But we can write this matrix as

BN

The middle row of zeros in this matrix does not affect the column-rank, so the detectability criterion
becomes that the matrix I-A -B
C 0
i. J(d,r) = 0=y =7r = Cz = r. But from the constraint x = Az + Bu + Bd we have
(I — A)x — Bu = Bd. Putting these together gives

et -]

Now a standard result of linear algebra (also easy to prove) is that if M has full column-rank,
then if Mz = b has a solution then it is unique. In this case we know that there is a solution for
x and u, since we are told that J = 0. Hence this equation has a unique solution if the coefficient
matrix [ -4 -B
C 0
ii. As above, J(d,r}) =0=y =7 = Cz =r. But now we have C = 1, so z = r. Also we have the
constraint x = Az + Bu + Bd, with A = 0.5 and B = 1, so we have

] should have full column-rank.

] has full column-rank.

r = 05z+4+u+d
=05z = u+d
=u = 05r—2 (sincexz=r,d=2)

But we have

and -3< U <3
so substituting for v and d we have

-3< 05r <3
and —-1< 05r <5

which are both satisfied if —2 < r < 6. So |'r <—2o0rr>6 | = J(d,r) > 0.




3. (a) Let u = f(e). Then the describing function is defined as N(E) = EELV—, where

2n

U+jV= % f(Esing)(sin 8 + j cos 8)dd
0

Since f(e) is an odd function, V = 0. So only U needs to be calculated:
1 27
— f(E'sin 0) sin 6df

T Jo

U

4 1|‘/2
—/ f(Esin 8) sin 846
T Jo
sin” 1 (d/E) T/2
= é/ 0d0+fl—/ sin 68d0
T Jo T Jsin—1(d/E)

4
= —[-cosbl T a/m

since cos(sin™! z) = /1 — 22 (by elementary geometry). Therefore

4 d\?
NE)=—7/1-|=
(E) nk ! (E)
(b) If E < d then the output of the nonlinearity is always zero, and hence | N(E) =0

(c) Differentiating N(FE), using the formula for the derivative of a quotient, gives

2{1 — (d/E)}"Y2(2d?E~®)nE — 4w{1 — (d/E)}/?
w2 E?
Arnd?E~2 — 4w {1 — (d/E)?}

wpn/L- (3)]

d? d?

N'(E)

which is 0 when

Sketching the graph:

We know that N(E) =0 for E < d. Also from the expression, N(E) — 0 as E — oo. This agrees
with intuition, because the output approaches a square wave of amplitude 1 although the input
becomes a sine wave of infinite amplitude, so the ‘equivalent gain’ becomes zero. When E becomes
just bigger than d the output suddenly becomes non-zero, initially as narrow pulses, so one expects
the ‘equivalent gain’ to increase to some maximum, then decrease towards 0. We already know from
above that the maximum occurs for E = dv/2. This maximum value is given by

4 1\* 2
Emam:E(d\/i)zm 1—(E> :;{2

So the graph looks like Fig. 1.
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Figure 1: Graph of N(E)

(d) The describing function method predicts a limit-cycle oscillation when

1

G(jw) + NE) =

0
ie when the graphs of G(jw) and —1/N(E) intersect. Since N{E) is real and N(E) > 0, the graph
of —1/N(E) lies on the negative real axis. Since 0 < N(E) < 2/(nd) (from part 3c), we have
—00 < ~1/N(E) € —wd/2. So an absence of limit-cycle oscillation will be predicted if the graph of
G(jw) crosses the real axis only at points to the right of —md/2.
(Note: Every point on the graph of —1/N(E) corresponds to two values of E, one with N’(E) > 0
and the other with N'(E) < 0. So each crossing would correspond to two limit-cycles, one stable
and the other unstable. Therefore the absence of crossings is required.)
Now G(jw) = k/[jw(jw + 1)%] and k > 0, so argG(jw) = —F — 2tan~(w) and hence arg G(jw)
decreases monotonically from —n/2 to —37/2 as w increases from 0 to co. Thus it has only one
intersection with the real axis, at some negative value. Let this intersection occur at frequency wyg.
Then - x

arg G(jwo) = -3~ 2tan_1(w0) = -7 = tan“l(wo) =1 =wy=1

Thus the crossing of the real axis occurs at

, k k
A RSV

So an intersection of the two graphs does not occur if

k nd

The situation is shown in Fig. 2.



4.

(a)

(b)

(c)

Nygquist Diagram

Imaginary Axis

Real Axis

Figure 2: Graphs of G(jw) and —1/N(E)

A function f(.) is Lipschitz continuous if

/() = f)ll < Lilz -yl

for some constant L > 0.

Without assuming such a condition, we would not be sure that a solution of & = f(z) existed, or
that it was unique. Both ezistence (for all time) and uniqueness of solutions are required for reason-
able models of engineering systems, and are guaranteed by Lipschitz continuity. Another desirable
consequence of Lipschitz continuity is continuity of the solution with respect to initial conditions.

LaSalle’s theorem states that if S is an invariant set in which V(x) <0, and M is the largest invariant
set in S on which V'(z) == 0, then all trajectories which start in S approach M as ¢ — oco.

When specialised to an equilibrium (assumed to be at 0), LaSalle’s theorem states that if S is an
invariant set in which V(z) > 0 and V(z) < 0, and the set {z € S|V (z) = 0} contains no trajectories
other than z(t) = 0, then 0 is asymptotically stable, and all trajectories starting in S converge to 0.
Lyapunov’s method for establishing asymptotic stability of an equilibrium state requires that a
continuous function V'(z) be found such that V(0) = 0, V() > 0 for 2 # 0, and V(z) < 0 for all
z # 0 in some neighbourhood of the equilibrium (assuming that a change of coordinates has been
made so that the equilibrium is at 0). LaSalle’s theorem extends this by:

e Relaxing the condition on V' — which frequently does not hold, even when the equilibrium is
asymptotically stable, and (sometimes) by removing the requirement that V{(z) > 0 for z # 0.

e Furthermore, the general form of LaSalle’s theorem allows convergence to invariant sets such as
limit-cycles to be proved, not just to isolated equilibria.

e Also, finding an invariant set S in which the condition on V holds allows estimation of a region
of attraction — with the Lyapunov method the estimate is always of the form {z|V(z) < c}.
Clearly (z1 = 0,22 = 0) = (&1 = 0,22 = 0), so (0,0) is an equilibrium state.
We have V(0) = fOO hi(y)dy + 30% = 0.
For z1 # 0 we have foml hi(y)dy > 0, since y < 0 = dy < 0 and hence h1(y)dy > 0 (as a consequence
of yh1(y) > 0). Hence we have V(z) > 0for z # 0 and z; < Y.



av ov

8—:1:13:1 + b——gmz

hi(z1)z2 + 22[—hi(z1) — ho(a2)]

—xohg(x2) <0 if z#0 and |z1] <Y, |z <Y.

This proves that 0 is stable, by Lyapunov’s stability theorem.

But we cannot assert that V < 0 since z2 = 0 may occur when z # 0. So try LaSalle’s theorem:
Let S = {z|V(z) < Wy}, where V}, is chosen such that this entire level set satisfies |z1| < ¥ and
lza| < Y. S is invariant since V(z) < 0 (shown above). Suppose that z(t) € S and z(t) # 0 but
V(z(t)) = 0. Then z5(t) = 0, so z1(t) # 0. Hence hi(z1(t)) # 0, since yhi(y) > 0 for y # 0. So
for small enough 7 > 0 we have z2(t + 7) = Z2(t)7 = h1(z1(£))7 # 0 and hence V(z(t + 7)) < 0.
Thus the only trajectory that can remain in the set {z € S|V (z) = 0} is z(¢) = 0, and hence 0 is
asymptotically stable, by LaSalle’s theorem.

Note: Why does the question specify that hy and hy are Lipschitz continuous? Since we do not know
what these functions are, without knowing that they are Lipschitz continuous the above argument
could not even get started, since we would not even know whether the differential equations have a
solution.



