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1 In the standard adaptive filtering problem we have an input signal U = {u (n)},—,,
a reference signal D = {d (n)},_(, and a Finite Impulse Response filter (FIR) filter
H = {h(m) }%:0. This filter is applied to the input signal to produce an output signal

Y= {y(m)g ie. y
() = ) = Y, Wm)utn =)

The aim is to design H such that the output signal Y is as “close” as possible to D.

(a) Describe how the general adaptive filtering scenario above may be formulated
as a Wiener filtering problem. As part of this description you should define the error
criterion used and explain (without detailed calculations) the steps involved in deriving a
solution.

Solution:

Error criterion is the expected value of the mean-squared error between the
reference signal D and the filtered estimate Y:

J = E{|d(n) ~y(n)}
In the Wiener filter this expected squared error is minimised with respect to the filter
coefficients H to give an optimal solution. This solution can be obtained by differentiating
J with respect to H, setting to zero and solving for the coefficients.

(b) For each of the following three cases, describe how the problem may
be formulated as an adaptive filtering problem, defining (with the aid of diagrams)
appropriate reference signals, input signals and error signals. Detail any assumptions

or approximations involved.

() Let X = {x(n)},;_, be a sequence of independent and identically
distributed random symbols such that

Pr{x(n) =1} =Pr{x(n) = -1} =0.5.

These symbols are transmitted through a communication channel Hgpannel
which distorts the transmitted symbols to produce

z(n) = [Henannetx] (1) -
The aim is to design a FIR filter to recover the transmitted symbols as
accurately as possible.
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Solution:

*To solve this problem, we will need a set of training symbols. Call this
the reference signal {d(n)}

+Call the signal coming out of the communication channel the input signal
{u(n)}

We  will filter {u(n)} to  yield Alu(n)  where
u(n)=(u(n),u(n—1),...,u(n—M+1NT

«Let the error signal be e (n) = d (n) — k' u (n)

*The minimization of E {e2 (n)} with respect to & is the Wiener filtering
problem. Call this solution A

*Once the training period is over, we will recover the transmitted symbols

using hgptg (n)

(ii) In an echo cancellation problem for telephony, the local (near) user has
a hands-free unit comprising a microphone and loudspeaker. The voice of the
far speaker, coming out of loudspeaker, is reflected by the room back to the
microphone (the echo), and from there transmitted back to the far speaker.
The echo is annoying to the far speaker and the aim is thus to cancel the echo.
[20%]

Solution:
*Define
—u{n) to be signal out of loudspeaker (speech signal of the far speaker)

— & (n) the signal of near speaker
d Hroom [M] (n) the echo

*Call the signal into the mic d (n),

d (n) = Hroom[](n) + €(n)
S — N~
echo near speaker speech

We  will filter {u(n)} to yield ATu(n)  where
u(n)=(un),u(n-1),....u(n—M+1NT

*Let the error signal be e (n) = d (n) — k' u(n)

*The minimization of E {e2 (n)} with respect to 4 is the Wiener filtering
problem
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«If we have completely cancelled the echo then

e(n)=¢(n)
= signal from microphone minus echoes

= speech signal of interest.

(iii) A recording is made of a bird singing in background noise. A second

recording is simultaneously made at a nearby location. It is assumed that the

second recording is statistically correlated with the noise in the first recording.

The aim is to remove the noise from the first recording which contains both

noise and birdsong. [20%]
Solution:

*Define the following reference signal:

d(n) = @ +V\(I,1_)/

signal of interest ~ "°'%®

(bird)

s(n) and v (n) statistically independent
*Call the recording of background noise alone the input signal u(n)
*Obviously u (n) # v (n) but u (n) and v (n) are correlated
*Now filter recorded noise u (n) to make it more like v(n)

*Recovered signal is d(n) — hlu(n) where
u(n) = (u(n),u(n~1),...,u(n—M~+1))7T

*Optimise the filter & by solving miny, E { (d(n)— BTy (n))2}

*The solution to this problem is the Wiener filter
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2 Recall that the inner product of two vectors X = [x1,...,%n]" andy = [y1,...,¥m
is defined as (x,y) = ¥.I* | x;y; and the norm as ||x|| = 1/(x,x).

]T

(a) Consider two random variables x and y. It is desired to find a linear estimator

of x given y, i.e. X = ay where scalar a is to be determined.

By defining an appropriate inner product and norm for random variables, express the
Wiener solution to this problem in vector space form (i.e. in terms of the inner products
and norms you have defined). State also the orthogonality property that is satisfied by this
solution.

Solution:

Define the inner product as

%y =E{n},

and the norm as
x| = (x,x) = E{ax}.

The Wiener solution is found by minimising
2
[lx—ayll

w.r.t. a. This is the Wiener criterion for the estimator. Expanding the norm using the inner

product and upon differentiating yields the solution

_ &y
»y)

So, X is the projection of x onto y

The residue of the projection x — X is orthogonal to y:

(x=%y) = (x,y) — (X,y) =0.

(b) We now have a collection of random variables {y1,...,y;} and it is desired to
find a linear estimator of x of the form X = Z§=1 a;y;. If t is increased by 1, we would like
to update the solution for {yq,...,y} to {y1,...,¥r, ¥+1 } using a recursive update.

Describe the Gram-Schmidt procedure for solving this problem.

Solution:

*We know that the solution should be to project x onto the space spanned by
15w}
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*We will use this interpretation to derive the recursive implementation
*We must first make {y1,...,y;} orthogonal. Set €, = y1. For j > 1,
i—1
6=y~ % E (&)
J =7 2
1 E(g)

1=

&

—_

*Now project x onto {€1,...,&},

E (xg;)
(e7)

*Main point: to define &1 we don’t have to change {¢y,...,&}, which gives

xX=

g.

™~
txy

=1

T

the recursive implementation

(c) The standard formulation for the solution to the problem in part (b) is to find

el (v Loon) {5 {(e-)7)

where vector a; = [ay,...,q;] and y,fT = [y1,...,y]. Derive an explicit solution to this
problem. [30%]

This is a Wiener filtering problem and the solution is

a; by minimising

a = (E {YzYtT}>—1 E {xy:}
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3 (a) Describe the parametric model-based approach to spectrum estimation, and
compare its properties with non-parametric methods such as the periodogram.

Solution [More detailed than required:]

*Periodogram-based methods can lead to biased estimators with large variance

oIf the physical process which generated the data is known or can be well
approximated, then a parametric model can be constructed

*Careful estimation of the parameters in the model can lead to power spectrum
estimates with improved bias/variance.

*Consider spectrum estimation for LTI systems driven by a white noise input
sequence.

*If a random process {X;} can be modelled as white noise exciting a filter
with frequency response H (e/ wT) then the spectral density of the data can be

expressed as:

Sx(/°T) = o2 |H (/T

where Gv% is the variance of the white noise process. [It is usually assumed
that Gv% = 1 and the scaling is incorporated as gain in the frequency response]

*We will study models in which the frequency response H(e/®T) can be
represented by a finite number of parameters which are estimated from the
data.

*Parametric models need to be chosen carefully - an inappropriate model for
the data can give misleading results

ARMA Models A quite general representation is the autoregressive moving-average
(ARMA) model:

*The ARMA(P,Q) model difference equation representation is:

P 0
Xn = — Z apx”_p+ Z qun—q (1)
p=1 g=0

where:

ap are the AR parameters,

bg are the MA parameters

Version 1- 8 Feb 2006 (TURN OVER for continuation of Question 3
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and {W,} is a zero-mean stationary white noise process with unit variance,
ol =1.
*Clearly the ARMA model is a pole-zero IIR filter-based model with transfer

function

where:

P 0
A@=1+Y az?, B@)=Y b
p=1 q=0

*Unless otherwise stated we will always assume that the filter is stable, i.e.
the poles (solutions of A(z) = 0) all lie wirhin the unit circle (we say in this
case that A(z) is minimum phase). Otherwise the autocorrelation function is

undefined and the process is technically rnon-stationary.

*Hence the power spectrum of the ARMA process is:

_ BN

iwT
SX(e] ) - |A(erT)|2

The ARMA model is quite a flexible and general way to model a stationary random

process:

*The poles model well the peaks in the spectrum (sharper peaks implies poles
closer to the unit circle)

*The zeros model troughs in the spectrum

*Complex spectra can be approximated well by large model orders P and Q

(b) Suppose that a single frequency component having normalised frequency €2
and amplitude a is buried in independent, uncorrelated, complex Gaussian noise with
variance 0'92:

xn = aexp(jnQ) + en =agn(Q) + en

We observe a sequence of N data points from this process, x = {xg, x1, ..., Xy_1}. Show
that the maximum likelihood solution for amplitude and frequency values can be obtained
by minimising the total squared error:

N-1

J(@,Q) =Y |t —aexp(jnQ)[?
n=0

Version 1- 8 Feb 2006 (cont.
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Solution:

As for the AR model, think of a change of variables from e, to xy:

Xn = agn(®) + ey

with ag,(w) considered as a constant. This leads to:

plxnla, 0) =

én=Xn—agn (w)

- exp | — l 2|
~2mo2 P\ 202!

[[/] = 1 as for the AR model since 322 = 1.]

Now consider a vector of N observed data points (measurements):

X= [xo, X2, ...,xN_l]

and the corresponding vector of frequency terms:

g(w) = [g()(w)) gz((l)), "')gN——l(w)]

Since the e, are independent:

p(x|a,®) =

i ',:]2

p(xn|a, @)

| .
:WP( : L bmaor’)

1 1
= ——=exp| ~———=J(a,0 )
(2ro2)N ( 202 (a,0)

Clearly maximising the likelihood is equivalent to minimising J(a, @)

(c) Hence show that the maximum likelihood solution for a is given by

ML — g()"x
2(Q)Fg(Q)
where g(Q) = [g0(Q), 81(Q), ..., gn-1()]”

[30%]
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Solution:
N-1 )
J(a,0) =Y |xn—agn(o)]
n=0
= |[x—ag(o)[*

=(x— ag((o))H(X ~ag(w))
=x"x - 2R (x7g(w)a) + |ag(o)*

[recall that ¥ is the complex conjugate of the transpose (‘Hermitian transpose’)]

Version 1- 8 Feb 2006 (cont.
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First consider minimising J(a, @) with respect to the amplitude. This could be done
by differentiation wrt the real and imaginary parts of a. It’s more straightforward however
to rewrite the expression as:

xx—2%(x"g(w)a) + |ag(w)?

. lg(@)fx?
2(w)7g(0)

[verify this expression as an extra example question]

Now, the only term in this expression that depends on a is the final term, which is

minimised (equals zero) when:

This is the ML solution for the amplitude.

(d) Finally, show that the maximum likelihood solution for Q is found by

minimising

Q H 2
J(GML,Q) — XHX . |g( 2[ X|
g(Q)7g(Q)
Relate this final result to the standard periodogram frequency estimator, and comment on
this relationship. [25%]
Solution:

At this value of a the final term in J(a™L, ) is zero, so:

To solve for @M~ would involve a search of J (aML, ®) for all values of @ to find the

minimum.

Version 1- 8 Feb 2006 (TURN OVER for continuation of Question 3
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Note, however, that x//x does not depend upon @ while the second term has a very
special (and familiar) form: The dot product g(®)¥x is the DTFT of x evaluated at ,

since
N—1

g()x = Z xpexp(—ionT)
n=0

Moreover, the modulus-squared of this term divided by g(w)”g(w) = N is the

periodogram:

[ Zﬁ,v;ol xnexp(—ionT)|?
N
= const. — Periodogram(w)

J(@E @) = const. —

(see Eq. (77)).

Thus, to find the ML frequency estimate simply find the frequency at the maximum
value of the periodogram power spectrum estimate. This gives another strong justification
for the use of the periodogram in the presence of deterministic sinusoidal components in

noise.

Version 1- 8 Feb 2006
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4  From measurements of a stationary random process {x;}, the autocorrelation

sequence is estimated as
Ryx[l] =0.9!"

(a) Briefly describe the principal methods for improving the performance of the
periodogram estimator of power spectra and state their properties.

Solution:
Principal methods are Bartlett, Blackman-Tukey and Welsh.
Bartlett:

*Bartlett method averages periodogram estimates from successive sub-frames
of the data:The Bartlett estimate is then given by:

SB e]COT

N |

i ej(DT (2)

If the data subsequences are uncorrelated with one another the Bartlett
procedure reduces the variance by a factor of K, by less if they are correlated.

*Bartlett allows a trade-off between frequency resolution (e< N) and variance
of the estimate (< 1/K).

*Reduction in variance is at the expense of requiring more data for the same

resolution.
Blackman-Tukey

*The Blackman-Tukey method applies a window function of length 2L 41 to
the estimated autocorrelation function:

L
SBT (JOT) = ¥ wiRxx[l]exp(— jooT) 3)
L

where L < N and wj is any suitable window function, e.g. Hamming,
Hanning, Bartlett,...

oIt is clear that the resulting spectrum can be written as a frequency domain
convolution:

1

SF (19T) = oW (%) £ S5 ()

where W(.) is the DTFT of the window function and S (.) is the Periodogram.
Version 1- 8 Feb 2006 (TURN OVER for continuation of Question 4
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*The B-T method can reduce the variance of the periodogram estimate at the
expense of some frequency resolution. A special case is the correlogram
considered also in the course

Welsh procedure:

*The Welch procedure performs averaging over frames as in the Bartlett
method

*However, the periodograms are modified to incorporate a window function on
the data:

2
§OeIoTy = -

N 1
wnxn( )e jon

n=0

with I/NYN w2 =1.

*As for the Bartlett method, averaging is then performed over K frames:

SW (0T = i (k) (eJOT) 4)

*The expected value of this spectral estimate can be shown to be:
AW, i 1 ; ;
ESY (/7)) = 5=V (/) 55 (/°T)

where W (/7)) is the DTET of the window and V (e/9T) = £ |w (e/2T)[2.

*When the segments are non-overlapping the variance is approximately that of
the Bartlett estimate.

(b) Calculate the first order (P = 1) autoregressive model which corresponds to
this data and show that the corresponding estimated power spectrum is:

jQ)=— 1092
Sx (e |1-0.9¢ /22
Solution:

Use Yule-Walker equations for P=1:

Rxx[0la; = —Rxx[1]
Version 1- 8 Feb 2006 (cont.
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So:
a;=-09
Also (gain term),
b3 = Rxx[0]+ Rxx[1]a; =1—-0.9> = 0.19

Hence, power spectrum is:

b2 1—-0.81
|1+aje” J|2 |1 —0.9¢— /|2

Sx(el) =

(c) Obtain an expression for the correlogram estimate of the power spectrum from
the same data, using 2L + 1 autocorrelation values (i.e. using correlation lags —L to
+L). [Recall that the correlogram estimate uses only the central part of the estimated
autocorrelation function in estimating the power spectrum. ]

a)T kT
(e ZRXX —IRer,

L .
— Z O_9|l|e—-ﬂ<a)T

k=—~L
L
- €j0+ Z 0‘9|l|(e—jka)T +e+jka)T)
k=1
9400 1—0.9¢ JLoT 1 —0.9¢/L0T

1 —0.9¢—JjoT +0. 1—0.9e/0T

(d) What is the relationship between the two power spectrum estimates in b) and
¢) (you should consider both the case of medium and very large values of L)?

For medium L the correlogram estimate is the AR estimate convolved with the
spectrum of a rectangular window function. For large L the effect of this convolution
becomes negligible and the two estimates should be identical. (Note - this applies because
the estimated Ryy is precisely that of a first order AR process.

END OF PAPER
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