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MOLECULAR THERMODYNAMICS
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1 (a) An ideal gas flows through an adiabatic converging nozzle. Consider the
state of the gas at the following positions:

(i) A point on the nozzle centre-line where the flow velocity is V;

(ii) A point in the laminar viscous boundary layer on the nozzle wall
where the flow velocity is 0.1V,

(iii) A point extremely close to the nozzle wall where the flow velocity is
effectively zero.

For each case, explain briefly how you would expect the molecular velocity distribution
at the point in question to deviate from the Maxwell-Boltzmann distribution and state
whether or not you would expect the Navier-Stokes equations to be valid locally.

(b) Anideal gas at temperature T is composed of identical molecules of mass m.
The Maxwell-Boltzmann molecular speed distribution function g.(C) is defined by,

(C) = 4nC?| 2L " ex _mC”
Ee 27kT ™ )

where C is the speed of a molecule and & is Boltzmann’s constant. In answering the
following questions you may make free use of the tables of integrals on the next page.

(i) Using a suitable substitution prove that,
4

Jz

Hence show that the mean translational kinetic energy of a molecule is
equal to 3k7/2.

Gy X
|g.(C)dC = [ X?exp(-X?)dx .
0 0

(ii) Find the fraction of molecules with translational kinetic energies less
than the mean value.

(iii) Show that the root mean square deviation of the translational kinetic
energy of a molecule from the mean value is equal to kT'4/3/2 .
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Xo erf (Xo) Xo erf (Xo)
0 0 1.6 0.9763
0.2 0.2227 1.8 0.9891
0.4 0.4284 2.0 0.9953
0.6 0.6039 2.2 0.9981
0.8 0.7421 24 0.9993
1.0 0.8427 2.6 0.9998
1.2 0.9103 2.8 0.9999
1.4 0.9523 o0 1.0000

Tables of Integrals for Question 1.

(TURN OVER
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2 Consider the laminar incompressible viscous flow of a perfect gas through a
capillary tube of diameter 2R. The flow is driven by a streamwise pressure gradient
dp/dx and the flow velocity u varies with radius r. Conditions are such that the flow is in
the slip regime and information is required on how the mass flowrate varies with the
Knudsen number, Kn. (Kn = A/R where A is the molecular mean free path.)

(@) In order to estimate ugip (the effective slip velocity at the tube wall), a
simple kinetic theory model is used. If £is distance measured from the wall, the model
assumes ‘free-molecule’ behaviour for 0 < £ <A and ‘continuum’ behaviour for £> A.
Assuming that all molecules are reflected diffusely from the wall show that,

du
w = 5],

It may be assumed without proof that the mass flux of molecules incident on a wall is
pC /4 where C is the mean thermal speed of the molecules, and that the dynamic
viscosity of the gas u is equal to pCA/2.

(b) The analysis now proceeds as for continuum flow but with a modified wall
boundary condition to compensate for the non-continuum layer near the wall. Starting
from the force-momentum principle applied to a cylindrical control volume of radius »
and length &, derive an expression for the flow velocity u(r) in terms of R, Kn and
dp/dx. Hence show that,

M = 1+4Kn,

m

cont

where m is the actual mass flowrate and m
continuum theory to apply.

is the mass flowrate obtained assuming

cont
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3 (a) The Boltzmann relation is:
S=kinQ .

Explain briefly the meaning of S, &k and €, and show that this relationship is consistent
with entropy being an extensive property.

(b) Figure 1 shows an isolated system comprising a 1 kg block of iron
(specific heat capacity, ¢, = 440 Jkg'K™") in thermal contact with a 1 kg block of
copper (specific heat capacity, ¢, = 380 Jkg'K™'). At equilibrium the temperature of
both blocks is 300 K. Calculate the probability of the system existing in a state where
the temperature of the copper block is increased by 0.001 K due to random fluctuations.
Comment briefly on the result.
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Fig. 1

(©) The quantum energy of a simple harmonic oscillator relative to its
ground state is given by:
g=nhv ,

where % is Planck’s constant, v is the oscillation frequency and » is a non-negative
integer. Draw a state-space diagram showing the permissible quantum states for a
system that comprises three such oscillators and has a total energy E. Determine the
number of states for this system having energy in the range 1.0 pJ to 1.001 uJ if the
oscillation frequency is 10" Hz.

Data:  h=6.626x107*Js k=1.381x10"2 JK!

(TURN OVER
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4 (a) Figure 2 shows the variation with temperature of the constant volume
specific (not molecular) heat capacity, ¢, , for hydrogen gas, H,.

@) Explain the shape of the curve.
(ii) Give theoretical values for ¢, and the ratio of specific heat
capacities, y, at very low, very high and room temperatures.
(iii) Explain how the curve would differ for oxygen gas, Os. [40%]
(b)  The atoms of a certain monatomic gas have translational and electronic
energy modes only. The quantum energy levels of the electrons are such that only the
ground state (with degeneracy go = 1 and energy & = 0) and the first excited energy
level (with degeneracy g, = g and energy & = ¢) are significantly populated.
i) Write down an expression for the electronic partition function
and hence derive the relationship between the constant volume
specific heat capacity, ¢, , and temperature, assuming that the
translational energy modes are fully excited. [45%]
(i1) Sketch and annotate a graph of ¢, against T. (Detailed
quantitative information is not required.) [15%)]

You may use without proof the following expression for the internal energy:
0
U=NkT"—(nZ), ,
2 (nz),

where Z = Zg" exp(—€, /kT) is the partition function and other symbols have their

usual meanings.

(cont.
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ANSWERS

1 (b) (i) 0.607

2 2
) ) u - {(l+2Kn)R 7 }[_d_p]
2u dx

3 (b)  exp(-2.85x10")

(c) 1.72x10%*

4 (a) (i) Low Temperature: 6.24 kJ/kgK, 1.67;
High Temperature: 14.6 kJ/kgK, 1.29;
Room T: 10.4 kJ/kgK, 1.4.

b @ ¢-= R{E + {gj gexp(9/T) - } where 0=¢/k
2 \T) (exp(®/T)+g)

A.J. White & J.B. Young






