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TURBULENCE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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1 (a)  Explain the physical origin of the secondary flow in Kdrmén and Bodewadt
[30%]

layers.
(b) Use order of magnitude arguments to deduce that, for Karman and
Bodewadt layers,

Ug U,
—~ =~ py—— .
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Hence, or otherwise, show that the boundary layer thickness is of order (V/Q)l/2 ,

where Q is the relative rotation between the fluid and the surface. You may assume
that u, and ugy are of the same order of magnitude in the layer. [35%]

(c) Sketch the secondary flow pattern in a stirred cup of tea. Explain how the
tea comes to rest and estimate the spin-down time. [35%]
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2 (a) State Kelvin’s circulation theorem. [20%]

(b) Consider two adjacent points, A and B, on a dye line (a material line) in an
inviscid fluid. Let dl be the displacement vector that links the two points, i.e.
dl =xp —x . The change in 4l in time & is §(dl) =(up —u 4)d . Show that

D
=@ =@ Vu .

Now, suppose that, at some initial instant, the dye is coincident with a vortex line, so
that dl =aw(x ) at =0, o being some scalar. Use the inviscid vorticity equation to

show that Do/ Dt = 0, and hence that

@ _ o@
|l =0)| |o@E=0)

Thus, the change in the direction and magnitude of ® in a material element with time is
the same as dl. It follows that points A and B always lie on the vortex line, i.e. the

vortex line moves like a dye line. What is the name associated with this law? [50%]

(¢) The fact that vortex lines move like dye lines may also be obtained from
Kelvin’s theorem. Consider a thin, isolated vortex tube and a closed curve C that
encircles the vortex tube at ¢ = 0. Use Kelvin’s theorem to show that, if C is a material
curve always composed of the same fluid elements, then it must encircle the vortex tube

for all times. Deduce that vortex lines move with the fluid. [30%]

(TURN OVER
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3 Consider a 20 m x 20 m reception room with a ceiling height 8 m. The room
contains on average one guest per square metre. The guests are moving about the room
in random patterns with a characteristic velocity of 0.5 m s™', each of them doing work
on the surrounding fluid at an average rate of 1 W.

(a) The mechanism that produces the velocity fluctuations in this problem is
limited in the vertical direction up to the guests’ height and in the two horizontal
directions. Discuss qualitatively how the turbulent fluctuations become finite and
approximately isotropic in the region between the guests’ heads and the ceiling. [40%]

(b) Assuming that the turbulence is homogeneous and isotropic in the whole of
the reception room and neglecting any wall effects, estimate the characteristic large-
eddy lengthscale and timescale of the turbulence in the room. [40%]

(¢) A 2 cm diameter neutrally-buoyant balloon is claimed by some guests to be
small enough to respond to the full range of turbulent motions in the room. Is this
correct? [20%]
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4 Consider a turbulent axisymmetric jet issuing into stagnant surroundings from a
nozzle of diameter D with uniform velocity Uj. x is the streamwise and 7 the radial

coordinate.

(a) Given that the axial velocity radial profile is self-similar and that the jet
width ¢ increases linearly with x, show that the centreline jet velocity U, decreases as

x7L. [40%]

(b) Given additionally that the Reynolds stresses are self-similar, show that the
eddy viscosity is independent of x. [40%]

(c)  Show that the mass flow rate in the jet increases linearly with x. [20%]

END OF PAPER
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4A12: Turbulence

Data Card

Assume incompressible fluid with constant properties.
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Scalar dissipation:

/ 2
9N = 2D(3¢ ) ~ 2252
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Scaling rule for shear flow, flow dominant in direction z;:
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Kolmogorov scales:
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Taylor microscale:
2
e = 1511—23
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Eddy viscosity (for simple shear):

Y]
UUy = —Viurd
1%2 8%2



Vortex Dynamics Data Card

Grad, Div and Curl in Cartesian Coordinates
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Integral Theorems

Gauss : j(V~A)dV =§A- das

Stokes : [(Vx A)-dS =§A-dl

Vector Identities

V(A-B)=(A-V)B+(BV)A+ AX(VX B)+ BXx(V x A)
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Engineering Part IIB 2006
4A12 — Turbulence

Numerical answers

Q3.  (b) Turbulent velocity = 0.5 m/s (given); Lengthscale = 1.25 m; Timescale = 2.5 s.
(c) Kolmogorov lengthscale = 0.4 mm






