ENGINEERING TRIPOS PART IIB

Monday 1 May 2006 9.00 to 10.30

Module 4B8

ELECTRONIC SYSTEM DESIGN

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Attachments: data sheets

Appendix 1 - OP-270A data sheet (2 pages) Appendix 2 - DAC 7741 data sheet (1 page) Appendix 3 - PIC16F84 data sheet (1 page)

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS

Engineering Data Book
CUED approved calculator allowed
Supplementary pages: Two extra
copies of Fig. 2 (Question 2).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

- 1. For low frequency and precision measurements with an op-amp the non-ideal characteristics of the amplifiers should be considered, such as the input offset voltage, input bias current, temperature effects and common mode gain.
- a) Define and describe the characteristics of an *input offset voltage* and an *input bias current*. [20%]
- b) Fig. 1(a) shows an OP-270A op-amp with a gain of 20. Calculate the voltage output for ambient temperatures at -40°C and +80°C, using data from the data sheet in Appendix 1. [10%]
- c) Draw the circuit structure for an instrumentation amplifier based on three op amps and derive expressions for its gain and CMRR (common mode rejection ratio). [30%]
- d) Derive an expression for the gain of the instrumentation amplifier circuit shown in Fig. 1(b) and describe the advantages and disadvantages of this circuit. [40%]

Fig. 1

- The partial block diagram of a Successive Approximation Analogue to Digital Converter (ADC) is shown in Fig 2. The Digital to Analogue Converter (DAC) is a 16 bit parallel input device with the timing diagram given in Appendix 2 (DAC7741). The pin out of the microcontroller is given in Appendix 3 (PIC16F84). A comparator is available, whose characteristics can be viewed as ideal.
- a) Describe by annotating the answer sheet copy of Fig. 2, how would you use the microcontroller in order to achieve Analogue to Digital conversion.
 - b) Draw a block diagram schematic for the interface unit between the [40%]

[10%]

- c) Using a flow diagram, describe a Successive Approximation Analogue to Digital conversion algorithm for your design. [30%]
 - d) What will be minimum data conversion time achievable if:

microcontroller and the DAC and describe your solution.

- reading the comparator status requires 2 instructions,
- setting an output bit from the microcontroller requires 1 instruction,
- the voltage settling of the DAC output is 1 µs and
- the microcontroller oscillator frequency is 20 MHz? [20%]

3. a) Internally compensated op-amps are usually compensated with a method called "dominant-pole". Define and explain the "dominant-pole" compensation scheme.

[10%]

b) Sketch an op-amp circuit with lead compensation and describe how it works including a Bode plot diagram for gain and phase.

[20%]

Describe pole-zero compensation and draw a Bode plot diagram for gain and phase.

[10%]

- d) An example of input frequency compensation is shown in Fig 3.
 - i) Derive expressions for the pole and pole-zero assuming that the differential amplifier has a finite gain A and is otherwise ideal.
 - ii) If resistors R_1 , R_2 and R_3 are equal to $10k\Omega$, $R=2.6~k\Omega$ and C=6~nFcalculate the pole-zero (lag-lead) and pole for this circuit. [60%]

Fig. 3

- 4. An accurate *half-wave* rectifier is required using a *single* op-amp which will give a -5 V peak output when the input is a sine wave with a 0.2 V peak value. The circuit input resistance is to be $20 \text{ k}\Omega$ and errors of no more than 0.2% of the expected peak output voltage should be allowed.
- a) Draw a suitable circuit diagram to achieve this. Explain clearly its operation for both polarities of the input voltage. Any diodes used are modeled as having a leakage current I_0 when reverse biased and having a forward voltage drop V_0 when forward biased. Explain clearly how errors arise.

[40%]

b) Specify values of all components in the circuits and calculate the value of the parameter which would lead to an error of no more than 0.2% of the output peak value.

[25%]

c) Show how additional components will allow the peak output voltage to be maintained on a capacitor with a droop of only 1% at 30 Hz. Determine the value of the capacitor needed if the voltmeter measuring the peak output voltage has an input resistance of $100~k\Omega$.

[25%]

d) Explain briefly a possible common application for a peak voltage detector.

[10%]

- 5. a) A high pass active filter is to have a *Chebyshev* response. Sketch the expected gain against frequency response for this filter, comparing it to a *Butterworth* filter. For what applications are both filter types best suited?

 How does the (gain × bandwidth) product of the op-amp become a limitation?

 [20%]
 - a) Consider the polynomial:-

$$\frac{v_2}{v_1} = \frac{As^2}{s^2 + 1.4s\omega_0 + 1.2\omega_0^2}$$
 where $s = j\omega$.

If it relates to a circuit input voltage v_1 and output voltage v_2 , show how it has the desired *Chebyshev* high pass filter form with a turn-over frequency ω_0 . What is the magnitude of the gain when $\omega = \omega_0$? [20%]

c) The *Chebyshev* active filter circuit shown at Fig. 5 has a gain given by:-

$$\frac{v_2}{v_1} = \frac{-Y_1Y_3}{Y_5(Y_1 + Y_2 + Y_3 + Y_4) + Y_3Y_4}$$

where Y_1 to Y_5 are the *conductances* of the components. If the component connected between the op-amp output and the inverting input is a resistor, determine the types of the other components to give the desired form of response. [10%]

- d) Obtain expressions for the passband gain A and the turn-over frequency ω_0 for the circuit in Fig 5 in terms of the conductances Y_1 to Y_5 . [25%]
- e) If a filter is required with A=-20, $\omega_0=500$ rad /s, and if the resistor defining Y_5 is $100~{\rm k}\Omega$ and Y_4 is a capacitor with value 22 nF, determine the values of the other components. [25%]

Version: 6 (CONT.

Fig. 5

END OF PAPER

OP-270

ground noise and power supply fluctuations. Power consumption of the dual OP-270 is one-third less than two OP-27s, a significant advantage for power conscious applications. The OP-270 is unity-gain stable with a gainbandwidth product of 5MHz and a slew rate of 2.4V/µs.

The OP-270 offers excellent amplifier matching which is important for applications such as multiple gain blocks, lownoise instrumentation amplifiers, dual buffers, and low-noise active filters.

The OP-270 conforms to the industry standard 8-pin DIP pinout. It is pin compatible with the MC1458/1558, SE5532/A, RM4558 and HA5102 dual op amps and can be used to upgrade systems using these devices.

For higher speed applications the OP-271, with a slew rate of $8V/\mu s$, is recommended. For a quad op amp, see the OP-470.

ABSOL	.UTE	MAXI	NUM R	atings	(Note	1)
-------	------	------	-------	--------	-------	----

Supply Voltage	±18V
Differential Input Voltage (Note 2)	
Differential Input Current (Note 2)	
Input Voltage	
Output Short-Circuit Duration	Continuous

Storage Temperature R. P. RC, S, Z-Package. Lead Temperature Rang Junction Temperature (Operating Temperature OP-270A	ge (Soldering, 60 : T) Range	sec) 65°C 55°C	: 300°C to +150°C to +125°C
PACKAGE TYPE	O _{JA} (Note 3)	ejc	UNITS
8-Pin Hermetic DIP (Z)	134	12	*CW
8-Pin Plastic D(P (P)	96	. 87	•C/W
20-Contact LCC (RC)	86	33	*C/W

NOTES:

16-Pin SOL (S)

1. Absolute maximum ratings apply to both DICE and packaged parts, unless otherwise noted.

27

•CW

- The OP-270's inputs are protected by back-to-back diodes. Current limiting realstors are not used in order to achieve low noise performance. If differential
- realstors are not used in order to achieve low noise performance. It summands voltage exceeds ±10V, the input current should be limited to ±25mA.

 9, as specified for worst case mounting conditions, i.e., e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, beautiful for CCP packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in socket for CerDIP, P-DIP, and LCC packages; e, as specified for device in the specified for the cerDIP, and LCC packages; e, as specified for the cerDIP, and LCC packages; e, as specified for the cerDIP, and LCC packages; e, as specified for the cerDIP, and LCC packages; e, as specified for the cerDIP, and LCC packages; e, as specified for the cerDIP, and LCC packages; e, as specified for the cerDIP vice soldered to printed circuit board for SOL package.

ELECTRICAL CHARACTERISTICS at $V_8 = \pm 15V$, $T_A = +25$ °C, unless otherwise noted.

			C	P-270A	Æ.		OP-270F	,	C	P-270G	1	
PARAMETER :	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Input Offset Voltage	Vos .	_	-	10	75	-	20	150		50	250	μ٧
Input Offset Current	los.	V _{CM} =0V	-	1	10	-	3	15	_	5	20	nA
Input Bias Current	I _B	V _{CM} =0V	-	5	20	-	. 10	40	-	15	60	ηA
Input Noise Voltage	on p-p	0.3Hz to 10Hz (Note 1)	-	80	200	-	80	200	-	80	-	nVp-p
		f ₀ = 10Hz	-	8.6	6.5	_	3.6	6.5	-	3.6	-	
Input Noise	_	fo = 100Hz	-	3.2	5.5	-	3.2	5.5	-	3.2	-	nV√Hz
Voltage Density	● n	f _o = 1kHz (Note 2)	-	3,2	5.0	-	3.2	5.0	-	3.2	-	
Input Noise Current Density		f _o = 10Hz	_	1.1	-	-	1.1	<i>,</i> -	-	1,1	_	
	<u>ا</u> .	f ₀ = 100Hz	-	0.7	-	_	0.7	-	-	0.7	-	pA√Hz
Content Density	·	fo = 1kHz	-	đ.0 ·	-	-	0.6	-	-	0.6		
Large-Signal		V _Q =±10V										
Voltage Gain	A _{VO}	$R_L = 10k\Omega$	1500	2300	-	1000	1700	-	750	1500	-	V/mV
		R _L = 2kQ	750	1200	-	500	900		350	700	-	
Input Voltage Range	₩R	(Note 3)	±12	±12.5	´ -	±12	±12.5	-	±12	±12.5	-	٧
Output Voltage Swing	v _o	R _L ≥2kΩ	± 12	±13.5	-	±12	±13.5	-	±12	±13,5	-	٧
Common-Mode Rejection	CMR	V _{CM} =±11V	106	125	-	100	120	-	90	110	-	₫B
Power Supply Rejection Ratio	PSRR	V _g =±4.5V m ±18V	-	0.56	3.2	-	1.0	5.6	-	1.5	6	μV/V
Slew Rate	SR		1.7	2.4		1.7	2.4		1.7	2,4	-	V/µs
												<u> </u>

OP-270

ELECTRICAL CHARACTERISTICS at $V_8 = \pm 15V$, $T_A = +25$ °C, unless otherwise noted. Continued

		'	OP-270A/E		OP-270F			OP-270Q				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNITS
Supply Current (All Ampliflers)	lay	No Load	-	4	6.5	-	4	6.5	_	4	6.5	mA
Gain Bandwidth Product	GBW	<u></u>		5		_	5	-	_	5	ж	MHz
Channel Separation	cs	$V_0 = 20V_{p-p}$ $f_0 = 10Hz \text{ (Note 1)}$	125	175	-	125	175	-	_	175	-	dB
Input Capacitance	CIN	· · · · · ·	-	3	-	-	3		-	3	_	pF
Input Resistance Differential-Mode	A _{IN}		=	0.4	_	-	0.4	_	-	0.4	_	MO
Input Resistance Common-Mode	RINCM		-	20	· -	-	20	-	_	20	_	GC
Settling Time	t _e	Ay = +1, 10V Step to 0.01%	_	5	-	_	5	-		5	_	μe

NOTES:

Guaranteed by not 100% tested.
 Sample tested.
 Guaranteed by CMR test.

ELECTRICAL CHARACTERISTICS at $V_8 = \pm 15V$, $-55^{\circ}C \le T_A \le +125^{\circ}C$ for OP-270A, unless otherwise noted.

			, , , , , , , , , , , , , , , , , , , ,	OP-270A		
PARAMETER	SYMBOL	CONDITIONS	MIN -	TYP	MAX	UNITS
Input Offset Voltage	Vos			30	175	μ٧
Average Input Offset Voltage Drift	TCV _{OS}			0.2	1	μV/°C
Input Offset Current	los	_ V _{CM} = 0V	-	2	30	nA
Input Blas Current	l _B	V _{CM} = 0V	-	6	60	nA
Large-Signal Voltage Gain	Avo	V _O = ±10V R _L = 10kΩ R _L = 2kΩ	750 400	1600 800	<u>-</u>	V/mV
Input Voitage Range	IVR	(Note 1)	±12	±12.5	-	٧
Output Voltage Swing	V _O	· R _L ≥2kΩ	±12	±13		٧
Common-Mode Rejection	CMR	V _{CM} = ±11V	100	120	-	dB
Power Supply Rejection Ration	PSRR	V ₆ = ±4.5V to ±18V		1.0	5.6	μV/V
Supply Current (All Amplifiers)	Isy	No Load	-	4.5	7.5	Αm

NOTE: 1. Guaranteed by CMR test.

TIMING CHARACTERISTICS

			DAC7741Y					
PARAMETER	DESCRIPTION	MIN	TYP	MAX	UNITS			
tacs	CS LOW for Read	100			ns			
t _{RDS}	R/W HIGH to CS LOW	10			กร			
[‡] RDH	R/W HIGH after CS HIGH	10		1	ns			
toz	CS HIGH to Data Bus High Impedance	10		70	ns			
t _{CSD}	CS LOW to Data Bus Valid		85	100	กร			
twcs	CS LOW for Write	30		1	ns*			
tws	RW LOW to CS LOW	10			ns			
twn	R/W LOW after CS HIGH	10			ns			
Ls	CS LOW to LDAC HIGH	40 -			ns			
t _{LH}	CS LOW after LDAC HIGH	1 0			ns			
t _{ux}	LDAC HIGH	30			. ns			
tos	Data Valid to CS LOW	0	•		ns			
t _{OH}	Data Valid after CS HIGH	20			ns			
£wo	LDAC LOW	40		′	ns			
t _{SS}	RSTSEL Valid Before RST LOW	l 0			ns			
t _{eH}	RSTSEL Valid After RST HIGH	10			ns			
t _{RSS}	RST LOW	30			ns			
ts	Voltage Output Settling Time			. 5	μз			

TIMING DIAGRAMS

RESET TIMING

DAC7741 SBAS248A

PIC16F84A

18-pin Enhanced FLASH/EEPROM 8-Bit Microcontroller

High Performance RISC CPU Features:

- · Only 35 single word instructions to learn
- All instructions single-cycle except for programbranches which are two-cycle
- Operating speed: DC 20 MHz clock input DC - 200 ns instruction cycle
- · 1024 words of program memory
- · 68 bytes of Data RAM
- · 64 bytes of Data EEPROM
- · 14-bit wide instruction words
- · 8-bit wide data bytes
- · 15 Special Function Hardware registers
- · Eight-level deep hardware stack
- · Direct, indirect and relative addressing modes
- · Four interrupt sources:
 - External RB0/INT pin
 - TMR0 timer overflow
 - PORTB<7:4> interrupt-on-change
 - Data EEPROM write complete

Peripheral Features:

- · 13 I/O pins with individual direction control
- · High current sink/source for direct LED drive
 - 25 mA sink max. per pin
 - 25 mA source max. per pin
- TMR0: 8-bit timer/counter with 8-bit programmable prescaler

Special Microcontroller Features:

- 10,000 erase/write cycles Enhanced FLASH Program memory typical
- 10,000,000 typical erase/write cycles EEPROM Data memory typical
- EEPROM Data Retention > 40 years
- In-Circuit Serial Programming™ (ICSP™) via two pins
- Power-on Reset (POR), Power-up Timer (PWRT), Oscillator Start-up Timer (OST)
- Watchdog Timer (WDT) with its own On-Chip RC Oscillator for reliable operation
- · Code protection
- Power saving SLEEP mode
- · Selectable oscillator options

Pin Diagrams

CMOS Enhanced FLASH/EEPROM Technology:

- · Low power, high speed technology
- · Fully static design
- · Wide operating voltage range:
 - Commercial: 2.0V to 5.5V
 - Industrial: 2.0V to 5.5V
- · Low power consumption:
 - < 2 mA typical @ 5V, 4 MHz
 - 15 μA typical @ 2V, 32 kHz
 - < 0.5 μA typical standby current @ 2V

ENGINEERING TRIPOS PART IIB

Monday 1 May 2006 9.00 to 10.30

Module 4B8

ELECTRONIC SYSTEM DESIGN

Question 2

Fig. 2

ENGINEERING TRIPOS PART IIB

Monday 1 May 2006 9.00 to 10.30

Module 4B8

ELECTRONIC SYSTEM DESIGN

Question 2

Fig. 2