ENGINEERING TRIPOS PART IIB

Friday 28 April 2006 9.00t0 10.30

Module 4C1

DESIGN AGAINST FAILURE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
Elasticity and Plasticity formulae (2 pages)
Fracture Mechanics Datasheet (8 pages)

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you may
do so by the Invigilator
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1 (a) Define line tension 7 along a dislocation line and relate it to the dislocation
line energy. Comment on why a dislocation line tends to be straight in the absence of
stresses.

(b) Explain how to determine the magnitude of a typical Burger’s vector.
(¢) Define the force acting on a dislocation.

(d) Derive an expression for the ideal shear strength, and hence explain why
metals do not typically achieve this ideal strength.

(e) Explain the operation of a Frank-Read dislocation source, and hence derive
an expression for the yield stress in shear. Using estimates for the relevant quantities,
calculate the value of the shear yield strength of a typical metal. Comment on how this
compares with the ideal shear strength.

(f)  Assuming that the pinning points in the Frank-Read model are dislocation
jogs, comment on how the shear yield strength derived with this model compares with
the ideal shear strength.
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2 (a) Sketch the uniaxial tensile stress versus strain curve of an amorphous
polymer tested well below 0.87, where T, is the glass transition temperature, and
describe the underlying failure mechanisms.

(b) Sketch the uniaxial tensile stress versus strain curve of an amorphous
polymer tested ar 0.87, , and describe the underlying failure mechanisms.

(¢) Construct a failure mechanism map for an amorphous polymer.

(d) Describe briefly what is meant by Coble creep and Nabarro-Herring creep.

(e) Figure 1 shows a cylindrical volume element subjected to axisymmetric
loading, with axial stress oy and radial stress o,. For each of the following room

temperature deformation and/or failure processes, sketch the failure surfaces in
axisymmetric stress space.

(i) Plastic yielding;

(i) Cleavage failure (propagation controlled).

0y +— +—>0

Oy

Oy

Fig. 1

(TURN OVER
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3 A semi-infinite solid contains a thin brittle interface layer parallel to the surface at
a depth a as sketched in Fig. 2. The bulk properties of the solid are identical on either
side of the layer. A surface crack extends normal to the surface, with its tip at the
interface as shown in Fig. 2. Remote loading may be applied to generate either a
mode I stress intensity K; or a mode II stress intensity K;;. The stress components
ogg and o.g are

1 0 28 3 )
Tpg = cos—| K;cos“ ———K;7sin@
66 \/5; 2[ 1 5 9 i j

cosg[K] 0052§+K11(3cos€ —1))

!
(o) =
ro 2+ 27r

where the polar coordinates (r,6) are defined in Fig. 2. It may be assumed that the
crack in Fig. 2 propagates in the bulk when the maximum value of oyy at a distance
r =0.01a reaches a critical value p,. Failure of the interface may be assumed to occur
when the stress normal to the interface at a distance » = 0.01a reaches a critical value

PB- o

(a) For the case of remote mode I loading, derive a criterion to determine
whether cracking occurs along the interface or in the bulk, in terms of the ratio

P4l ps-
(b) The crack is now loaded in pure mode II.
(i)  Find the direction in which the crack would propagate in the bulk.

(ii) Derive the criterion to determine whether the crack branches into the
interface or into the bulk, in terms of p 4/ pp.

(contd.
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4 (a) Explain why the critical energy release rate for fracture, G;~, is much
greater than twice the surface energy for engineering alloys. [15%]

(b) A flat circular indenter of radius a is pressed against the surface of a brittle
semi-infinite solid with a load P, as shown in the cross-section in Fig. 3. A cylindrical

crack of length / forms in the solid, initiating at the edge of the indenter.

(i)  Show that the compliance C is approximately given by

C= ! 5
Ena
where E is the Young’s modulus for the solid. [15%]

(i) Find an expression for the strain energy release rate G for the
cylindrical crack under the indenter, and comment on the stability of crack
advance. [50%]

(iii) Briefly discuss whether you would expect the cylindrical crack to
deviate from a constant radius with increasing depth. [20%]

P

|

2a

Fig. 3

END OF PAPER



Engineering Tripos Part IIA THIRD YEAR

Paper G4: Mechanics of Solids
ELASTICITY and PLASTICITY FORMULAE

1.  Axi-symmetric deformation : discs, tubes and spheres

Discs and tubes Spheres
d(roy) 1 d(2ow)
Equilibrium Opg = d,.rr + pwir? oo = 37 dr“
. o B 3w oo B2 B
Lamé’s equations (in elasticity) Oy = A — 2~ g pwrt - 2 rTdr Gy = A -~ 3
C
B v oo, B2
Jag = A + 2~ T § pwrt + 2 rTdr — EaT Ogg = A + 273
c
2. Plane stress and plane strain
Cartesian coordinates Polar coordinates
. du ou
Strains &x = gx &r = 3y
Cld ¥ Llov
&y = 3y &0 =y + 1936
ou v vl v
y = Jy * 9x " =or traf ~r
I azny 82exx 625yy a 9o J 5 dego _a_g_ll ey
Compatibility wdy T 3y2 + Py 37 {7’ 86} =g Vo T Tt Py
o 2 & 2 1a 1o
or (in elasticity) EY) + 2 (Oxx + Oyy) =0 92 +7ert 2 362 (On + O‘eg) =0
do, doxy ) d0rg
Equilibrium a;X T;‘L =0 37 (rom) + ﬁ —ogg =0
60‘21‘, BGXX d0pg d
Iy t*t ax = 0 28 t 370w + o =0
0 iﬁ{éﬁ@ﬁ 2 1o 1
V4¢ = 0 (in elasticity) 2 + 6)12 2 + 6y2 =0 972 +7Ft 2382

{a% 199 1 a2¢}
* T hacynd b =

arztrort 2e

, . 929 19¢ 1%
Airy Stress Function Okx = 32 O =¥ adr *2ag
929 929
Oyy = g2 Ok = 5o

Oxy = “m G = ~ g

%9 a {1 a_gb}



3. Torsion of prismatic bars

Prandt! stress function:

dF dF
O (ZTx) = @- s Oy (7)) = -7
Equilibrium: T = 2JFdA
A
Governing equation for elastic torsion: ~ V2F = —-2Gfi where f is the angle of twist per unit length.
4. Total potential energy of a body
I=U-Ww
where U = %J NsT [Dlgdv , W=P Tg and [D] is the elastic stiffness matrix.
14
5.

Principal stresses and stress invariants

Values of the principal stresses, op, can be obtained from the equation

Oxx — Op Oxy Oxz

Oxy Oyy — Op Oy, =0
Oxz Oy Oz — Op

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.
Expanding: op3 - I opt + Lop -~ I3

0 where I} = oxx + Oyy + Og,

Oxx Oxy Oxz
Oyy Oyz Oxx  Oxz Oxx  Oxy
I, = + and Iz = Oxy Oyy Oy
Oy, Oy Oy, Om Oxy Oyy
O Oyz Om

Equivalent stress and strain

; - L 2 5 s 2
Equivalent stress 0 = "\/7 { (o1—m)* + (03—~ 03)% + (03— 01) )
Bqui o - 2 5 2 5 12

quivalent strain increment de = 3 {dsl + de&p? + dez )
Yield criteria and flow rules
Tresca
Material yields when maximum value of loj ~ 03l, 1oy — o3l or loz — oyl

= Y = 2k, and then,
if o3 isthe intermediate stress, dej:dey:dez = A(l:—1:0) where A 0.

von Mises

Material yields when, (01 — 02)2 + (02 — 03)2 + (03 — 07)2

= 2Y2 = 6k2, and then
dey dey des de; ~dey dey —des des —deg N gi:
op T o2 T o3 T o-; T ;-0 T m-0o - T 245

October 2000
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Bl DEFORMATION AND FRACTURE

FRACTURE MECHANICS DATASHEET

Crack tip plastic zone sizes

2
( i(&] Plane stress

7t'O'y

diameter, d =1

2
—1—(&] Plane strain
¥4 Oy )

Crack opening displacement

[ 2
AL Plane stress
Oy

5 = ,
1K1 Plane strain
20,E
Energy release rate
%KIZ Plane stress
G=
1-v?

K?  Plane strain

2
Related to compliance C: G=l £t ac
2 B da



Asymptotic crack tip fields in a linear elastic solid

Mode I ‘G

36
T COS— sm— COS—
v 1/2m 2

o, = 19 (écosg—lcosfs—ej
T J2mr\4 2 4 2

7

g ( COSQ+1COS39)
06 = 1/Z:rr 2 4 2

T9=—2L_ (1 2+1sm§—0—)
T Lar\4a 2 4 2

u=

(
KI (1 v + sm2 9) cos-e— Plane stress
{ G 1+v 2 2
T 6 )
1-2v+sin -—] COS— Plane strain
27: 2
0S

[
KI ,/ d (——2— c -—J sm-‘2 Plane stress
1+v 2

I [2 2v - cos )sing Plane strain




Crack tip stress fields (cont'd)

Mode IT
O, = Ky cos2 sm—cosig
o \nr 2 2
Hri oot
O, = — sin — | 2 4+ cos—cos—
= 2nr
Ky ( . ]
T = cos— | 1 —sin—sin—
xy 2xr
O.. = Ky (——sm + sm36J
T \2xr\ 4 2
Cgg = — i3/ (zsing+—smﬁj
00 =" xr\a 2 2
.Y/ [—l—cosg+—coséﬁj
= Drr\4 2 2
ﬁ 1,—-{-( 2 +cos22] sin-g Plane stress
u= G 2 \1+v 2 2
ﬁ L (2—2v+cos2 2) sin—q Plane strain
G 27 2 2
Ky |1 (V— 1 +sin? Q] COS_G_ Plane stress
Y= G 2 \1+v 2
Ky | r [—1+2v+sin2—6—] cos—e— Plane strain
G T 2 2
w=0
Mode III
il ..
T sin
@ 2xr 2
T I o



Tables of stress intensity factors
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K1=2-}/—§-fg h«a and h«b

1
20H

Ky =

1—-v2
o=
1—3v2—2v3

Eu ‘H«aandH«b

Plane stress

Plane strain



a/W<0.7

K1=O'°° xa(

112-0.232+10.6
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W W

L12-0.6la/W+0.1343 / W3

2

a_
W2
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1.6

1.4 4
P S - (7
[l—c C—za sinzel dg 1.2 V/
11 4
1.0
0 02 04 06 08 1.0
o
K;=0C7a F(EJ
r
value ofF(a/r)T
‘ One crack e Two cracks
a ‘
- U B U B
-

0.00 3.36 224 336 2.24
0.10 2.73 1.98 2.73 1.98
0.20 230 1.82 241 1.83
0.30 2.04 1.67 2.15 1.70
0.40 1.86 1.58 1.96 1.61
0.50 1.73 1.49 1.83 1.57
0.60 1.64 142 171 1.52
0.80 147 1.32 1.58 1.43

10 1.37 1.22 1.45 1.38
15 1.18 1.06 1.29 1.26
2.0 1.06 1.01 121 1.20
3.0 094 = 093 114 1.13
5.0 081 .. 081 - 107 1.06
10.0 075" 075 1.03 1.03

IS 07077 07077  1.00 1.00

tU = uniaxial 0, B =biaxial 0.
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