#### ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2006 2.30 to 4

Module 4F1

#### CONTROL SYSTEM DESIGN

Answer not more than two questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is indicated in the right margin.

Attachment: Formulae sheet (3 pages).

STATIONERY REQUIREMENTS

Single-sided script paper

SPECIAL REQUIREMENTS

Engineering Data Book

CUED approved calculator allowed

Supplementary pages: Two extra copies

of Fig. 2 (Question 2).

You may not start to read the questions printed on the subsequent pages of this question paper until instructed that you may do so by the Invigilator

- 1 (a) Fig. 1 shows the block diagram of a two-degree-of-freedom control system where the plant to be controlled has transfer function G(s).
  - (i) Explain why the term "two-degree-of-freedom" is used. [10%]
  - (ii) Assuming that the return-ratio has already been designed, state but do not prove the minimum conditions which apply to the transfer function relating y(t) to r(t) for an internally stable control system. [10%]
- (b) A position control system is to be designed for an inertial load in which the plant transfer function is assumed to be  $G(s) = 1/s^2$ .
  - (i) In the control scheme of Fig. 1 an initial choice of H(s) = 1 is made. If e(t) = r(t) y(t) show that the Laplace transform of e(t), E(s), must have a zero at the origin when r(t) is a step input and the closed-loop is internally stable. [10%]
  - (ii) By considering the definition of the Laplace transform, or otherwise, show that

$$\int_0^\infty e(t)\,dt=0,$$

under the assumptions of part (b)(i).

- (iii) Explain why y(t) must always experience overshoot when r(t) is a step input for this plant when H(s) = 1. [10%]
- (c) A control system for the plant of part (b) is to be designed in which y(t) does not exhibit overshoot when r(t) is a step input. A desired transfer function  $D(s) = 1/(s+1)^2$  relating y(t) to r(t) is selected.
  - (i) State why D(s) is an admissible transfer function and show by direct calculation that it guarantees the required overshoot property. [20%]
  - (ii) Complete the design of a two-degree-of-freedom control system with the chosen D(s). [Hint: a useful first step might be to show that a lead compensator is stabilising for G(s).] [25%]

(cont.

[15%]

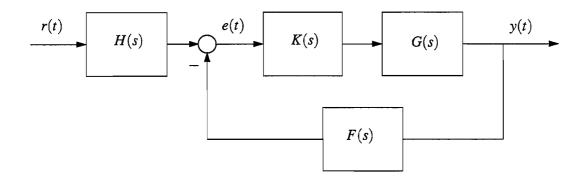


Fig. 1

- Fig. 2 is the Bode diagram of a system G(s) for which a feedback compensator K(s) is to be designed. It is known that G(s) has precisely one zero in the right half plane, and it may be assumed that G(s) is a real-rational transfer function.
  - (a) (i) Sketch on a copy of Fig. 2 the expected phase of  $G(j\omega)$  if G(s) were stable and minimum phase.

[15%]

(ii) Show that G(s) must have one right half plane pole, estimate the location of the right half plane zero and pole and give the form of the all-pass factor corresponding to the excess phase.

[20%]

(iii) Comment on any limitations that this might impose on the achievable crossover frequency.

[10%]

[35%]

- (b) If a constant controller K(s) = k is used, determine the number of right half plane poles of the closed-loop system as k varies over positive and negative values. [Hint: use a sketch of the Nyquist diagram.] [20%]
- (c) Show that a compensator K(s) having one pole and one zero can be designed to achieve the following specifications:

A: internal stability of the closed-loop,

B:  $|G(j\omega)K(j\omega)| = 1$  at  $\omega = 10$ ,

C: a phase margin of at least 40°.

Show on another copy of Fig. 2 the effect of this compensator on the return-ratio transfer function.

Two copies of Fig. 2 are provided on separate sheets. These should be handed in with your answers.



Fig. 2

3 Consider the plant

$$G(s) = \frac{(s+\alpha)(s^2+0.01s+1)}{(s+1)^4}.$$

Let S(s) and T(s) denote the sensitivity function and the complementary sensitivity function, respectively.

(a) Suppose  $\alpha = -1$  and a stabilising controller is required to achieve the following specifications:

A: 
$$|S(j\omega)| < \varepsilon$$
 for  $0 \le \omega \le 1$ ,

B: 
$$|S(j\omega)| < 2$$
 for  $1 \le \omega \le 10$ ,

C: 
$$|T(j\omega)| < 0.01$$
 for all  $\omega \ge 10$ .

Find a positive lower bound for  $\varepsilon$ .

[50%]

(b) Suppose  $\alpha = 1$  and a stabilising controller is required to achieve the following specifications:

A: 
$$|S(j\omega)| < \varepsilon$$
 for  $0 \le \omega \le 1$ ,

D: 
$$|S(j\omega)| \le 1$$
 for all  $\omega$ .

- (i) Show that these specifications are achievable for any  $\varepsilon > 0$ . [Hint: you may find it useful to work directly with a candidate return ratio L(s).] [30%]
- (ii) Comment on any practical problems that might be experienced if  $\varepsilon$  is taken to be very small. [20%]

**END OF PAPER** 



## Formulae sheet for Module 4F1: Control System Design

To be available during the examination.

### 1 Terms

For the standard feedback system shown below, the **Return-Ratio Transfer** Function L(s) is given by

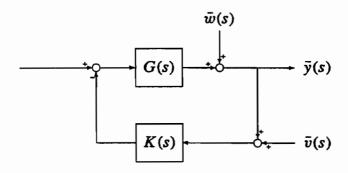
$$L(s) = G(s)K(s),$$

the Sensitivity Function S(s) is given by

$$S(s) = \frac{1}{1 + G(s)K(s)}$$

and the Complementary Sensitivity Function T(s) is given by

$$T(s) = \frac{G(s)K(s)}{1 + G(s)K(s)}$$



The closed-loop system is called **Internally Stable** if each of the *four* closed-loop transfer functions

$$\frac{1}{1+G(s)K(s)}, \quad \frac{G(s)K(s)}{1+G(s)K(s)}, \quad \frac{K(s)}{1+G(s)K(s)}, \quad \frac{G(s)}{1+G(s)K(s)}$$

are stable (which is equivalent to S(s) being stable and there being no right half plane pole/zero cancellations between G(s) and K(s)).

A transfer function is called **real-rational** if it can be written as the ratio of two polynomials in s, the coefficients of each of which are purely real.

## 2 Phase-lead compensators

The phase-lead compensator

$$K(s) = \alpha \frac{s + \omega_c/\alpha}{s + \omega_c\alpha}, \quad \alpha > 1$$

achieves its maximum phase advance at  $\omega = \omega_c$ , and satisfies:

$$|K(j\omega_c)| = 1$$
, and  $\angle K(j\omega_c) = 2 \arctan \alpha - 90^\circ$ .



# 3 The Bode Gain/Phase Relationship

If

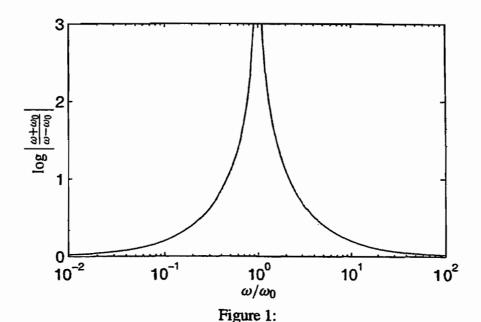
- 1. L(s) is a real-rational function of s,
- 2. L(s) has no poles or zeros in the open RHP (Re(s) > 0) and
- 3. satisfies the normalization condition L(0) > 0.

then

$$\angle L(j\omega_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d}{dv} \log |L(j\omega_0 e^v)| \log \coth \frac{|v|}{2} dv$$

Note that

$$\log \coth \frac{|v|}{2} = \log \left| \frac{\omega + \omega_0}{\omega - \omega_0} \right|$$
, where  $\omega = \omega_0 e^v$ .



If the slope of  $L(j\omega)$  is approximately constant for a sufficiently wide range of frequencies around  $\omega = \omega_0$  we get the approximate form of the Bode Gain/Phase Relationship

$$\angle L(j\omega_0) pprox \frac{\pi}{2} \left. \frac{d \log |L(j\omega_0 e^v|)}{dv} \right|_{\omega = \omega_0}$$



## 4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in Re(s) > 0, then if  $s_0 = \sigma_0 + j\omega_0$  with  $\sigma_0 > 0$ 

$$\log H(s_0) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\sigma_0}{\sigma_0^2 + (\omega - \omega_0)^2} \log H(j\omega) d\omega$$

and

$$\log|H(s_0)| = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta} \log|H(j|s_0|e^v)| dv$$

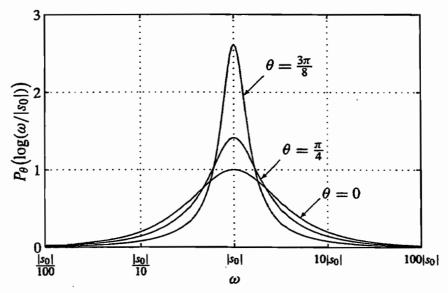
where  $v = \log\left(\frac{\omega}{|s_0|}\right)$  and  $\theta = \angle(s_0)$ . Note that, if  $s_0$  is real, so  $\angle s_0 = 0$ , then

$$\frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta} = \frac{1}{\cosh v}.$$

We define

$$P_{\theta}(v) = \frac{\cosh v \cos \theta}{\sinh^2 v + \cos^2 \theta}$$

and give graphs of  $P_{\theta}$  below.



The indefinite integral is given by

$$\int P_{\theta}(v) \, dv = \arctan\left(\frac{\sinh v}{\cos \theta}\right)$$

and

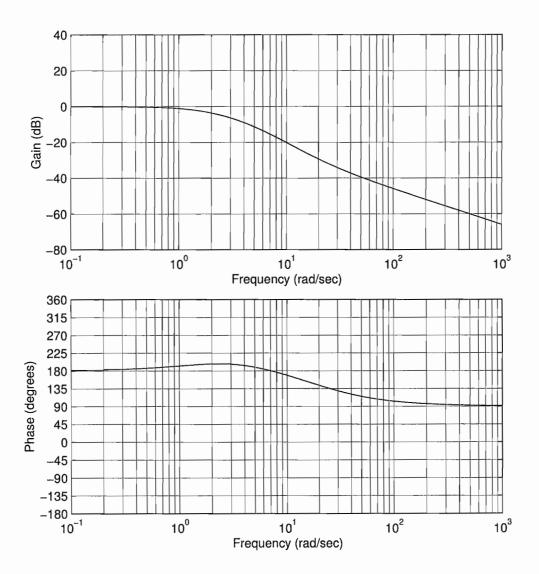
$$\frac{1}{\pi} \int_{-\infty}^{\infty} P_{\theta}(v) \, dv = 1 \quad \text{for all } \theta.$$

G. Vinnicombe M.C. Smith November 2002



### ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2006, Module 4F1, Question 2.

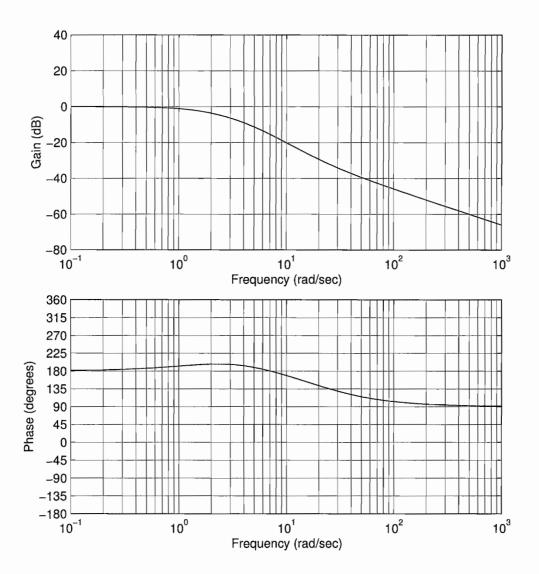


Extra copy of Fig. 2: Bode diagram of G(s) for Question 2.



### ENGINEERING TRIPOS PART IIB

Wednesday 26 April 2006, Module 4F1, Question 2.



Extra copy of Fig. 2: Bode diagram of G(s) for Question 2.

