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1 A predictive controller with constraints has been designed for the following
discrete-time system:

x(k+1) = Ax(k) + Bu(k)

Let x; and u be the prediction of the state and input, respectively, at time £+s when the
state at time k is x, = x(k). The vectors U and X are defined as

Uy *1

U X
vi=| 1|, x=]"%],

Un_1 N

vvherexH_1 = Ax + Bug over the horizons =0,1,...,N—1.

The prediction matrices ® and I' such that X = ®@x, +I'U are given by

(12\ /1 0 0
2 3 1 00
o=|5 8| r_ 10
8 13 10
21 34 13 3 1
K3455/ K2151)

(a) Show that the length of the control horizon is N = 3.
(b) What are the values of 43, 42B and 4AB?

(¢) Show that the constraint:

100 1\ (-1 =2
(o e)es()e G 3

is equivalent to the constraint:

(cont.

[10%]

[30%]

[10%]
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(d) Compute the values for a, b, ¢, d, e, f, g and 4 such that the constraints:

[1 0 0) [a)\ (1\ (0 0\
-1 0 0 b -1 00
c 1 0 a 0 00
d -1 0 |US|b{+| 0 [uEk-1)+]0 0]x(®
0 ¢ 1 a 0 00
0 d -1 b 0 00
\e 7 1) \a) \o) \s #)

are equivalent to the following constraints on the input rate and terminal state:
-1<Au; <2, s=0,1,...,N-1
(1 0)my <2,

where Aus = us —u,_;, fors=0,1,...,N—landu_; =u(k~1). [50%)

(TURN OVER



4
2 A predictive controller is to be designed for the following discrete-time system:

x(k+ 1) = Ax(k) + Blu(k) + d(k)],
(k) = Cx(k)

where x(k) is the state, u(k) is the input, y(k) is the measured output, and d(k) is an
unmeasured disturbance acting on the input.

(@) Rewrite the equations using the augmented state vector [x(k)T,d(k)T]7,
assuming that the disturbance d(k) is constant.

(b) Recall that (C,A4) is detectable if and only if

(“e*)

has full column rank for all A € A, where A is the set of eigenvalues of 4 on or outside
the unit circle. If 4 is stable, show that the augmented system is detectable if and only if
the following matrix has full column rank:

I-4 -B
c 0/
(c) The controller is to drive the output to a given constant reference r. The

system is subject to input disturbances and input constraints. An offset-free target
equilibrium pair is found by solving the following constrained optimization problem:

7 1 — .
Jd,r)= rlr}m(y r)2 (y—r)
subject to the constraints:

x = Ax+B(u+d),

Uigw S U+d <t

Uiow S U = Upjop,

where d is the current estimate of the input disturbance.

(cont.

[5%]
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(i) SupposeJ (a? ,#) = 0. Show that the solution to the optimization problem
is unique if and only if the following matrix has full column rank: [30%]

(<'7)

(i) Supposed =0.5,B=1andC=1,, =3 anduy;y =3.Ifd =2,
show that J(d,r) > 0 if r < =2 or r > 6. [40%)]

(TURN OVER
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3 A relay with dead-band, shown in Fig. 1, has input e and output #, with the input-
output relationship:

+1 if e>d
u=¢ 0 if |e/<d
-1 if e<—d

(2) Show that if e(2) = E sin(wt) and E > d then its describing function is given

by [30%)]
4 | (d\?
N(E) = —E 1- (E)
(b) What is its describing function if £ < d? [5%]

(c) Verify that N(E) has a stationary point at E = d+/2, and hence sketch the
graph of N(E). [30%]

(d) The relay with dead-band is in a negative feedback loop around a linear
system as shown in Fig. 2. The linear system has transfer function

G(s) (k> 0)

. k

T os(s+1)2
Show that the describing function method predicts the absence of limit-cycle oscillations

ifk< nd. [35%)]

(cont.
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4  (a) When studying systems of the form x = f(x) it is common to assume that
the function f(.) is Lipschitz continuous. Explain what this means, and why such an
assumption is made. [30%]

(b) Explain how LaSalle’s theorem extends Lyapunov’s direct method for
establishing asymptotic stability. [30%)]

(¢) Consider the system

=%

where ,(0) = h,(0) =0 and yh, (y) > 0 and yh, (y) > 0 for 0 < |y| <Y, where Y is given.
Both /,(.) and &,(.) are Lipschitz continuous. By considering the function

r@= [ 33

show that the origin is an asymptotically stable equilibrium state of the system. [40%]

END OF PAPER
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