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Thursday 27 April 2006 9 to 10.30

Module 4M13

COMPLEX ANALYSIS AND OPTIMIZATION
Answer not more than three questions.

The questions may be taken from any section.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Answers to Sections A and B should be tied together and handed in separately.

Attachment:
4M]13 datasheet (4 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this
question paper until instructed that you
may do so by the Invigilator




SECTION A

1 (a) Distinguish between the notions of a branch point and a simple pole for a
function of a complex variable. Illustrate your answer with an example of each. [25%]

(b) Explain, with an example, the idea of the radius of convergence of a
complex function. [15%]

(c) Evaluate by contour integration and the residue theorem the integral

Oj- dx
0 x* +a*
where a is a real constant. [60%)]

2 (a) Under what circumstances can a Taylor series expansion and a Laurent
series expansion be used to express a function of a complex variable? How can such
expansions be used to perform the process of analytic continuation of a complex
function? [30%]

(b) Explain the use of Jordan’s lemma in contour integration. [20%]

(¢) Find and classify all singularities of the following functions:

. (z—4)Z!3
_ =z " 15%
I Sy [15%]
i) f(z)=2100 [20%]
sin(z)
(i) f(z2)=(z*-2)"? [15%]

In each case, calculate the residues at all poles.



SECTION B

3 The operating cost f of an electricity supply system varies with the voltage ¥ (in
kV) and the conductance C (in S) as

2x10°
F=200 caxi0icey
VeC
(a) Use the standard optimality conditions for an unconstrained optimization
problem to find the voltage and conductance that minimize the operating cost. [25%]

(b) Apply the Steepest Descent Method to this problem for two iterations
starting from an initial solution (V,C) = (100,0.1). Evaluate the step length o, using

the formula given in the 4M13 datasheet rather than by line search. [40%]

(¢) In the light of your answer to (a) comment on and account for the
performance of the Steepest Descent Method observed in (b). [20%)]

(d) Comment on the relative advantages and disadvantages of using Newton’s

Method and the Conjugate Gradient Method rather than the Steepest Descent Method
on unconstrained minimization problems. [15%]

(TURN OVER



4

4 A rectangular platinum gauze catalyst must provide at least 240 cm? of effective
area. The mounting covers the periphery of the gauze, as shown schematically in Fig. 1,

reducing the effective area from xy cm? to (x-6)(y—4) cm?.

X

x—6cm

A0

A 4

Figure 1

It is desired to minimize the cost of the catalyst, which is proportional to the total
area of platinum gauze used.

(a (1) Formulate this design task as a constrained minimization problem
with two control variables, x and y. [5%]
(i) Assuming the constraint is active at the optimum, eliminate x from
your expression for the objective function, thus creating an unconstrained, univariate
minimization problem. [10%)]
(i) Estimate, using a Golden Section line search, the value of y that
minimizes the cost of the catalyst. A suitable initial interval for y is between 15 and 21
cm. The search can be halted when the interval has been reduced four times. [35%]

(b) By using a suitable Kuhn-Tucker multiplier formulation of the original
constrained optimization problem in part (i) of (a), identify the three equations that give
the first-order conditions that must be satisfied at an optimum, and hence show that the
constraint must be active at the optimum. [20%]

() Solve these three equations and verify that the solution represents a
minimum. Hence comment on the performance of the Golden Section line search in

part (iii) of (a). [30%]

END OF PAPER



4M13
OPTIMIZATION
DATA SHEET

1. Taylor Series Expansion

For one variable:
f@) = FG) + =260 + 2= +R
For several variables:

fx) = F&) + v T (x-x") + %(x—x*)TH(x*)(x—x*) + R

where
o] oIy o
ox, ox} dx, dx
gradient Vf(x) = | : and hessian H(x) = V(Vf(x)) = : ) :
i o’f o’f
_axn_ Laxn 0x, ax,f

H( x*) is a symmetric nxn matrix and R includes all higher order terms.

2. Golden Section Method

f (x)% (a) Evaluate f(x) at points A, B, C and D.
Ax _ d—Ax
d—Ax d (b) If f(B) < f(C), new interval isA - C.
éd{ =0.382 If f(B) > f(C), new interval is B — D.
If f(B) = f(C), new interval is either
d=1, A-CorB-D.
\ I, (c) Evaluate f(x) at new interior point. If
’ ( not converged, go to (b).
Ax Ax
A B C D =
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3. Newton’s Method
(a) Select starting point X,
(b) Determine search direction d, = —H (Xk)'1 Vi(x,)

(¢) Determine new estimate x, ., = X, +d,

(d) Test for convergence. If not converged, go to step (b)

4. Steepest Descent Method
(a) Select starting point X,

(b) Determine search direction d, = -V f(x,)
d’d
(¢) Perform line search to determine step size o, or evaluate o, TL
d, H(x)d,
X, tad,

i

(d) Determine new estimate X, | =

(e) Test for convergence. If not converged, go to step (b)

5. Conjugate Gradient Method
dOT dO

T
d H(x,) d,

(a) Select starting point x;, and compute d;, = ~V f(x,) and ¢, =

(b) Determine new estimate X, ., = X, + o, d,

2
(c) Bvaluate Vf(x, ) and 8, = [M}

V(x|

(d) Determine search directiond, | = ~Vf(x,,,) + B4,

T
de VA )

(e) Determine step size Oy =~
d H(x ) d,

1

(f) Test for convergence. If not converged, go to step (b)

6. Gauss-Newton Method (for Nonlinear Least Squares)

If the minimum squared error of residuals r(x) is sought:

Minimise f(x) = i r2x) = r(x) r(x)

i=1
(a) Select starting point x

(b) Determine search direction d, = —[ J(xk)TJ(xk) ]_1 J(xk)Tr(xk)
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vaeoT| 9 o,

where J(x) = : = :
T
Vr (x) irﬂ or,
_axl axn_
(c) Determine new estimate x, ., = X, +d,

(d) Test for convergence. If not converged, go to step (b)

Lagrange Multipliers
To minimise f(x) subject to m equality constraints 2,(x) = 0,1 = L, ..., m, solve the sys-

tem of simultaneous equations

VA(X*) + [Vh(X*) 1A =0 (n equations)
h(x*) =0 (m equations)

where A = [ﬂ,l, vy ).m] T is the vector of Lagrange multipliers and
dh, dh,
—_— . n
dx, 0x,
T
[Vh(x) 1" = [Vhl(x*) th(x*)] =
dh, oh
I n
Laxn T ox
Kuhn-Tucker Multipliers
To minimise f(x) subject to m equality constraints o,(x) = 0, i = 1, ..., m and p inequal-
ity constraints g(x) < 0,i = 1, ..., p, solve the system of simultaneous equations

VA + [Vh(x) 1"A + [Ve(x)1"_ =0 (n equations)
h(x*) =0 (m equations)
Vi=1l,..,p, Wg(x)=0 (pequations)

where A are Lagrange multipliers and p > 0 are the Kuhn-Tucker multipliers.
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9. Penalty & Barrier Functions
To minimise f(x) subject to p inequality constraints g(x) < 0,i =1, ..., p, define
q(x,p,) = f(x) + p, P(x)
where P(x) is a penalty function, e.g.
p
P(x) = Y (max [0, g(x)1)?

i=1

or alternatively
1
q(x%,p) = f(X) —p—kB(X)

where B(X) is a barrier function, e.g.

p

1
B(x) = —_—
2:1 g;(x)

Then for successive k = 1,2, ... and p, such that p, >0 and p, ., > p,, solve the prob-
lem

minimise q(Xx, p;)
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4M13 2006
Numerical Results

1

(a) -
() -
yis
©) —=
24243
(a) -
(b) -
(c) i) Poleatz=2
Branch cutatz=0
Residue is 32
(i) Poles at z =xnxn for all integer n # 0
Branch point atz=0
Residue is nln(nm)
1"
(iii) Branch points atz=0, 1
(a) 237.8kV, 0.02973 S

(b) First two iterations go to (V,C) = (100,0.05) and (100,0.0625)

(c) -
(d) -

(@ @® -
() -
(i) 16.42ecm<y<17.29 cm
(b) -
(c) y=16.649 cm, x =24.874 cm, u = 1.316






