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1.  (a) Kinetic temperature is defined as being proportional to the mean thermal (or
peculiar) translational kinetic energy of a molecule through the equation,

EkT = 1m67 or ERTz-—F
2 2 2 2

where k is Boltzmann’s constant, 7 is the mass of a molecule, R = k/m is the gas constant per

unit mass and C? is the mean square thermal speed. [10 %]

(b) The six groups have velocity components in m/s as follows :

(1250, 120,0); (50, 1320, 0); (50, 120, 1200);
(-1150,120,0);  (50,-1080,0); (50, 120, —1200).

(i) The components of the gas mean velocity are obviously (50, 120, 0) m/s. The thermal
or peculiar speed is the same for each group (as it should be by the equipartion
principle) and is equal to 1200 m/s. Hence, the temperature is,

c? 12002 1616 K [20 %]

3R 3x(8314.3/28)

(ii) As the gas is diatomic, there are 3 translational, 2 rotational and 2 vibrational (1 KE +
1 PE) degrees of freedom. If all these are active then, according to the equipartition

principle, the internal energy per unit mass will be,

_ 7x(8.3143/28)x1616
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B+2+2) RzT = 1679 kl/kg [20 %]

(¢) (1) The mean translational KE of a molecule is given by,
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where m is the mass of a molecule. Introducing the expression for f gives,
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(i) Define new variables,
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Hence, the energy per unit mass e is (divide by m),
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Integrating over w; :
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Finally,
2
e = SRT + VT [20 %]

(The first term is the internal energy per unit mass of a monatomic gas (¢, = 3R/2) and the

second term is the KE per unit mass based on the mean velocity V.)



2 (a)

Assume molecules make their last collision one mean free
path above or below the plane y = 0.

Flux of x-momentum from below = -’04—C[u(0) - lgﬁ

Flux of x-momentum from above = ﬁ[u(O) + ﬂih—l-

Net flux of x-momentum in negative y-direction = shear stress = 7 = L gl i—u
Ly
Macroscopically, dynamic viscosity u is defined by 7 = ,u{ldﬂ and hence, u= %’1 .
Ly
Thus S =%. [35%]

(b)

Applying the force-momentum equation to the control volume of length 5 x gives,

dr
dy

[T+?@/J§x ~10x =0 - =0 — 7 =constant

Y

This is valid for any flow regime as no model for the shear stress has been introduced. [15 %]



(c) Inthe central region, momentum transport is described by continuum theory so,

r=,u%= constant - u=%+C

The slip boundary conditions to model the two non-continuum layers are,

du ' du
0)=4A—; L=U- A—.
u(0) b u(L) 0

du/dy is constant across the duct because 7 is constant and hence,

2% _ ¢, v L ¢
dy dy u
Thus, ‘
T=Lu——q—2i,uﬂ=ﬁg-2Knr - r:—ro—
L L dy L (1+ 2Kn)

where 7o = pU/L is the shear stress for Kn — 0 (i.e., the continuum flow solution).

(d) The density p and mean molecular speed C are given by,

5
p = £ = Q00T g 55000 kg
RT  287.5x373.15

= [SRTT/Z B [8x287.5x373.15

1/2
J = 522.7 m/s
Vi1

T

From the Thermofluids Data Book, for air at 100 °C and 1 atm, z = 22x107° kg/m s. This is
also valid for 0.001 bar because u is independent of pressure. Hence, the mean free path and

Knudsen number are,

o 2u 2x22x107
pC  9.32x1074x522.7 _ L 2x1073

A 90.32x107°

=9032x10°m —» Kn=2=2""""" = 0045

[30 %]

[20 %]



3 (a) Q is the number of microstates that the system may exist in. For an isolated system,
the basic postulate is that these are equally probable. If the entropy increases, there are more
microstates available to the system and hence we are less certain about which state it will be
in at any time. (i) For the unrestrained expansion of an ideal gas, there is no work or heat
transfer, so the temperature will remain constant, and hence the level of certainty in
molecular velocities is unchanged. The volume has increased, however, so we are less
certain about the location of each molecule, consistent with the increase in entropy
associated with irreversibility. (ii) For heat addition, the temperature of the gas will increase
and so the molecular velocity distributions will broaden. We are therefore less certain about
the momentum of each molecule. The certainty in location remains unchanged (since the
volume is constant) so there is a net increase in uncertainty, consistent with the entropy
increase associated with heat addition.

(b) (i) Considering first the white balls. The number of locations for placing the first
white ball is C. For each of these, there are C — 1 locations for the second ball, then C - 2 for
the third, and so on. The number of possible arrangements for the white balls assuming them
to be distinguishable is thus C(C - 1)(C -2) ...(C-N + 1) = C! / (C — N)! However, the
balls are not distinguishable, and so we must divide by N! (the number of ways of arranging
the N balls on their own), giving C! / (C — N)! N! The same computation applies to the black
balls, so the total number of arrangements is W; = {C! / (C— N)! N' !}2 .

When the partition is removed, there are now 2N balls to distribute between 2C boxes, but
the N black balls and N white balls are indistinguishable. Thus,

_ 0)!
2 (2C-2N)!N!N!

(ii) The entropy of mixing is given by '
AS/k = ln[ZVWlJ =InQ2O)! + 2In(C-N)! = 2InC! - In(2C -2N)!

1
=2CIn2C-2C+2(C-N)In(C-N)-2(C-N)-2CInC+2C
—-2(C-N)In2C-2N)+2(C-N)
=2CIn2-2(C—-N)In2
=2NIn2

(iii) With C=1 and unrestricted balls per box, there is clearly only one arrangement, #;=1, in
the unmixed state. When mixed, there are 2 boxes and 2N balls. It is best to consider this as
2N balls and one partition. Thus,

_@N+)!
2TONIN
AS/k =(@N+1)In2N+1)~(2N +1)-2NIn N +2N
$O =2NIn(2+1/N)+1In(2N +1)-1 '
~2N1n2

The process is analogous to the mixing of equal volumes of two ideal gases at the same
pressure and temperature. The volume doubles for each gas, so the entropy increase for each
gas is mRIn2 = Nk1n2, giving the same result as above.



4.(a) N

O =2

;M

T

= Total number of particles.

= The number of particles in the j-th group for the most probable macrostate.
= The number of energy states in the j-th energy group.

= The (average) energy of the j-th energy group

= Boltzmann’s constant (1.38x10% J/K).

= The temperature.

Z is the (single particle) partition function and can be found by summing over all groups:

(b)

N
27/=1=%chexp{—sj/kn =  Z=YC,exp{-e,/kT}
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(¢) (i) Clearly pV = NkT, so the gas is ideal, and since there is only a translational
contribution to the partition function it is likely that it is monatomic.

(i)

and

31 3T ) ..
E=kT?>—=" uoting this is fine
ST~ 2 (quoting )
e = ﬂf_i kT? EAT”ZJ - 1—5k2T2
AT?? 8T 2 4



RMS of deviations in translational kinetic energy is given by:

— 22 22
RS e -5 = [PEL 2L 37

This is the root mean square deviation of the translational KE for a single molecule. The
temperature is proportional to the mean KE averaged over the (many) molecules, so
fluctuations in this will be very much less.



