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DIGITAL FILTERS AND SPECTRUM ESTIMATION

Worked Solutions.
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1 Consider the real valued signal
u(n) = Pu(n—1)+w(n),

where w(n) is an i.i.d. (independent and identically distributed) sequence with zero mean
and variance equal to one. The aim is to learn the unknown value f3.

(a) Describe, without mathematical detail, the principal methods for adaptive
estimation of a parameter such as 8 above. Compare and contrast their performance
and computational load.

(b) Assume the signal u(n) is stationary and derive E{u(n)?}.

(¢) Describe how you would use the least mean-squares (LMS) algorithm to learn
B. What is the minimum mean-squared error (MSE) at the optimal solution?

(d) Describe how you would use the recursive least squares (RLS) algorithm
to solve the same problem and show that the RLS algorithm converges to the optimal
solution when its parameter A = 1.
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2 The inverse of a symmetric positive definite matrix R can be expressed as

R =p Y (I-pR)
k=0

where p is a small positive constant and I is the identity matrix.

(@) Using the decomposition R =QTAQ where QTQ=QQT =1 and A is
diagonal, find the range of values for y for which the sum exists.

(b) The global solution to a Wiener filtering problem is given by hgpt = R~ 1p,
and h(n) is the solution obtained at step n of an iterative scheme. Using the association
hin)=u ZZ;& (I1— uR)*p, derive the Steepest Descent recursion.

(c) Write down the cost function J(h) for the Wiener filtering problem and sketch
1.1 05

05 1.1
the evolution h(n) of the Steepest Descent recursion on the same contour plot when (i)

1 =10.01 and (ii) p = 4.

the contour diagram of J(h) when R = . Make an approximate sketch of

SECTION Answers to Question 1

a) Assume the signal u(n) is stationary and derive E{u(n)?}. [20%]

Answer:

E{u(n)’} = B*E{u(n—1)*} +E{w(n)*} +2BE{w(n)u(n—1)}.
Now E{w(n)u(n— 1)} = 0. This implies
E{u(n)’} = B*E{u(n—1)*} + E{w(n)*}

or
1

E{u(n)?} = -

b) Describe how you would use the LMS algorithm to learn 8 what is the minimum
MSE at the optimal solution. [30%]
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Answer:

Find A that minimises

E{(u(n) ~ hu(n—1))*}

= (B~ E{u(n— )%} + E{w(n)?} +2(B — h)E {w(n)u(n—1)}.
Since E{w(n)u(n—1)} =0, it is obvious that the minimum MSE is

E{w(n)®} =1.
The LMS update rule is
B+ 1) = k() 4 p(u(n) — h(n)u(n— 1))u(n—1),

which is obtained by taking the gradient of the cost function w.r.to 4.

c¢) Describe how you would use the RLS algorithm to solve the same problem and
show that the RLS algorithm converges to the optimal solution when A = 1. [50%]

Answer:

The RLS algorithm solves
h(n) = argmhinf‘z:1 APk (k) — hu(k—1))?

Differentiating this function w.r.to h gives
=2 Y0 AR k) — huk— 1))u(k— 1).
Setting this function to zero and solving for & gives

X A Ru(yu(k— 1)
YR ARk —Du(k—1)

When A =1,
B n-1 Y7 u(k)uk—1)
n Y2 u(k—Du(k—1)
As n tends to infinity, the denominator tends to E{u(n)?} = (1 — 2)~!. The numerator
is

h

n Y (Bulk — Du(k— 1) +w(k)u(k — 1))

which tends to

E(Buln—1Du(n—1)) + E(w{nju(n—1)) = ; _ﬁﬁz

since E(w(n)u(n—1)) =0.
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SECTION Answers to Question 2

a) Using the decomposition R = Q*mQ where QTQ = QQT =I and mis diagonal,
find the range of values for u for which the sum exists. [35%]

Answer: One has
(I-uR) = (I-pQ"™Q)
=Q' (I-1m)Q
and clearly, using QQT =1,
(I- uR)* = QT (1— um)*Q
= T (I~ iR = QF (£, (1 pm)) Q.

So the sum exists provided

o0

Y (1 pa)*
k=0
exists. Which is true |1 — ud;| < 1 or
—1<1—pui<1

or2 > ui; > 0. So

>u>0.

Afmax
b) Using h(n) = ,u,):”;é (I— /,LR)k p. derive the Steepest Descent recursion. [30%]

Answer:

h(n+1)=p i (I- uR)*p
k=0

:u(l—uR)Oer(I—uR)ukf (I-uR)*'p
=1

= pp+ (I- uR)h(n)
=h(n) + p (p —Rh(n))

¢) Write down the cost function J(h) for the Wiener filtering problem and sketch

1.1 0.5
the contour diagram of J(h) when R = 05 11 | Sketch the evolution h(n) of the
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Steepest Descent recursion on the same contour plot when 1) g = 0.01 and (ii) u = 4.
(Rough sketches conveying the shape will suffice!) [35%]

Answer

The cost function is
J (h) =Jmin + (h - hopt)TR(h - hopt)'

The contour diagram looks something like

Convergence of Steepest Descent is assured provided Zm%; > > 0. For the given
R, Amax = 1.6 and Ay, = 0.6. For stability we need p < 1.25.

So for p =0.01 it converges and u = 4 it diverges. The plot of Steepest Descent
may look like the solid curved arrow for g = 0.01 and the dashed arrow for u = 4. The
arrow indicates the path of h(n) as a function of iteration. Note the convergence of h(n)
for u = 0.01 and divergence for 4 = 4.
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3 (a) Describe the periodogram method for power spectrum analysis, and explain
the principal means of improving its performance. [35%)]

Solution: Periodogram is obtained from the DTFT of {xg,x1,...,xy_1}:

A 1 ;
Sx(e10T) = —[X, (/9T

, N-—1 _ (1)
Xw(eja)T) _ Z xne—jan
n=0

which is known as the Periodogram.

Improve it by averaging over time and frequency, using Bartlett, Welch or
Blackman-Tukey methods.

(b) Show that the variance of the periodogram estimate is approximately
proportional to the square of the power spectrum for a Gaussian random process, i.e.
show that
var(Sx (/T ~ (Sx (e/*7))
where Sy (e/@T) is the periodogram estimate and Sy (e/®T) is the true power spectrum.  [35%)]
Solution:
This comes from the lecture notes as follows:

We can rewrite a stationary random process as a white noise process with power
spectrum equal to 1 driving a linear filter:

X(e/9T) = E(/®T)H (e1°T)
The power spectrum of such a process is:
Sx(e/®T) = L|H(e/*T)?
Now, define as usual windowed versions of E and X:

en, n=0,1,..,N—1
€w,n = .
0, otherwise

Xp, n=0,1,...N—1

0, otherwise
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Now, supposing we have the DTFT of xy,, and ey, , as Xy(ed a’T) and By, (e’ o7 we have
the approximate result:

Xy (e/9T) = E,, (/T H (79T

Note that filtering ey, , with filter H (ej Cl’T) does not give xy,, exactly, since there will
be filtering ‘end effects’ caused by the windowing operation on e,. The approximation
becomes exact as the window length becomes very large.

We then have:
1/N|Xw (/)%  UNIE (/TP H (/T
and hence:

var(1/N|Xy(e/®T)[%) ~ var(1/N|Ew(e/*T) P)(|H(e/T) )
= var(1/N|Ey(e/®")?)(Sx (e/*T))?

But, E is white Gaussian noise, whose periodogram has variance equal to c* = 1. Hence:
var(1/N1Xo (7T %) = var($x (e/97) = (Sx (e77))?

as required.

(¢) In a spectrum analyser unit, power spectrum estimates are updated
sequentially frame by frame through a long sequence of data, as follows:

SAg(l) (ejCOT) — Sg(l) (eja)T)

30 (10T = a8 () 4 (1 - a)sP(e/®T), n=2,3,..,

where §§? ) (e/9T) is the estimate obtained at frame 7 in the data and Sg? ) (e7®T) is the
periodogram estimate obtained from frame n. The nth frame of data is defined as the set
of data points [x(n~1) N1+ XnN—1] Where N (the framelength) is the number of data points
for the periodogram. ¢ is a positive parameter less than 1.

If the data within different frames can be considered independent of one another,
determine the variance of the estimate 3)(? ) (ej “’T) at frame 7, assuming that the variance
result in part (b) holds exactly.

Solution:
Variances of independent random variables add.
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So, if V, = var(S'gl) (e/2T)) we have:
Vi = 02V,_1 + (1 — 00)2var(S\ (797 )) = 02V, + (1 — @) (Sx (/T )2
In the steady state, V, =V,,_1 =V, so
V(1-0a%) = (1-a)*(Sx(e/T))?
or

_(-a) 0
V= =D seieony

This is an improvement compared to the basic periodogram, as in part (b). This is

due to the averaging, or smoothing effect of the analyser. When « is small there is little
smoothing and the variance is close to the periodoram’s variance. With o close to 1 the
variance is small owing to greater smoothing effect.

Discuss how the method could be used for analysis of non-stationary signals whose
power spectrum changes slowly and smoothly with time. [30%]
For non-stationary signals can still achieve some variance reduction with an
intermediate value of «, so that the estimate can slowly adapt to the changing spectral
content of the signal.
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4 A moving average (MA) process of order Q is expressed in the following form:

9
Xp = Z bq Wn—q
=0

where {w,} is a zero-mean white noise process having unity variance.

(a) Determine the power spectrum of the MA process and show that the
autocorrelation function takes the following form:

Zgzrbqbq—r if M <0

Rixlrl= ifr>Q

[30%]
Solution:

Power spectrum is:

0
Sx(exp(joT)) = Y biexp(—jioT)|>
=0

The autocorrelation function Ry [r] for the output x, of the MA model is:

Rxx[r] = E[xnxn-+r]

Substituting for x, and x4, from the MA model equation gives:

Q Q
s=0 q=0
Q Q0

g=0s=0

Q
= ) bg-rbq
q=0
Q

=Y by—rbg
q=0

as required.
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(b) The bilateral z-transform for a sequence 4, is defined as
o0
Z{hn} = Z hnz ™"
Show that the bilateral z-transform of Ryx/[r] is equal to B(z)B(z 1), where

Q
B(z) = Z bpz™"
n=0

Solution:

ZqQ:() bg—rbg is the convolution of {b,} with {b_4}, where by = 0 for ¢ < 0 and
q > Q. but z-transform of {b_,} is B(z~1). Hence, by z-transform convolution theorem,
z-transform of quz() bq—rbq is product of B(z) with B(z™!), as required.

(c) Ifthe Q zeros of the polynomial B(z~!) are located at n;, fori = 1, ..., Q, show
that B(z) has zeros at positions 1/n; fori—1,...,Q.

Solution: B(ni_l) = 0 by definition. Hence B(z)|,—1/,;, = 0, and thus zeros of B(z)
are at 1/n;,...

(d) Use these results to explain the spectral factorisation method for estimation
of the parameters of a MA model. State clearly any assumptions you make about the
model.

Solution:

Measure autocorrelation function. Part (b) shows that this equals B(z)B(z™!).
Hence find the roots of B(z)B(z~!). These will be arranged in the symmetrical pairs n;
and 1/n;, inside and outside the unit circle, for i =0, ..., Q. Then assume a minimum phase
MA filter, so choose #n; that lie within the unit circle as the required ones and reconstruct
the filter polynomial from those zeros.

(e) Two values of the autocorrelation function for a MA process are measured as
follows:
Rxx[0] =5, Rxx[l] =2
Determine from this data a suitable MA model of order Q = 1.

Solution:

Version 1 - 7 Feb 2007 (TURN OVER for continuation of Question 4

[20%]

[10%]

[20%]

[20%]



12
Note: Rxx[—1] = Rxx[1]. Need roots of

27V 45+22

Solving, get —2,—0.5. Hence required root is —0.5 (inside unit circle).

Thus polynomial is:

B(z) o< 1405771

But Ryx[0] = L.b?
Therefore filteris bg =4 x 1 =4,b; =4 x0.5=2.

END OF PAPER
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