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1. Ultrasonic imaging

(a) Ultrasound echos from structures deep in the body have to travel through more
tissue and so are of lower amplitude. The deeper a scatterer, the longer it takes
for the echo to get back to the probe. We can thus correct for the attenuation of
deep structures by applying a gain that increases with time. This is called time-gain
compensation. In order to work out the appropriate rate of increase we need to know
the speed of sound in the material, ¢, in m/s and the rate of attenuation, a, in dB/m. [20%)

(b) We want to know the rate at which sound is attenuated with time in dB/s. This
is given by a x ¢ because dB/m x m/s = dB/s. The required rate of time-gain
compensation will be minus this value, i.e. a positive gain rather than a negative rate
of attenuation. [15%)]

(c) (i) Distances will be overestimated because the sound is slower in the water than
the calibration of the machine.

1540
Hence the total depth will appear to be 1.73 + 1.4 = 3.13 cm. [15%)]

(ii) The true distance, d, from the centre of curvature of the probe to point B is given
by Pythagoras.
424+ 7.6° =d* = d = 8.5884cm
£ 1540

2.5884 cm of this is in the cold water and will be overestimated by a factor of 75
giving a measured distance of 2.797 cm. The measured distance of point B from the
centre of curvature of the probe is thus 8.797 cm.

The ultrasound pulse that is backscattered at B is fired at an angle 8 to the vertical,
where tan(§) = 4/7.6 = 6 = 27.7585°. Hence the vertical component of the distance
from the centre of curvature to B is given by 8.797 cos(27.7585) = 7.785 which is
0.185 cm more than it should be. The depth of the water-bath is thus measured as
3.185 cm. [30%)

(iii) The base of the water bath appears to be bent up at the sides. An exaggerated
sketch is shown below. Although the absolute error is just under 2 mm, the change
in error between the centre and the side is only 0.5 mm. The wavelength at 3 MHz is
about 0.51 mm, so we would not expect to see the curvature in the ultrasound image. [20%]

Base of water—bath appears curved



Assessors’ remarks: This question was about ultrasonic imaging of soft tissue. It
tested the candidates understanding of time-gain compensation and length distortion
due to variations in sound speed in different materials. Candidates showed a good
understanding of both these concepts and the quality of the answers was high. A
surprisingly large number of candidates even managed to correctly solve the more
difficult numerical problem in part (c)(ii). The comments offered in answer to the last
part of the question indicated a satisfactory understanding of the ultrasonic imaging
process.

. CT and nuclear medicine imaging

(a) The 2D Radon transform maps a function f(z,y) to the set of its integrals over
lines at perpendicular angles, ¢, and distances, s, from the origin.

A projection is a set of values of the radon transform that all have the same angle, ¢,
but different offsets, s, such that they cover the whole of the object being scanned.

The value of the projection at angle ¢ and offset s is proportional to minus the log
of the transmitted X-ray intensity over the incident X-ray intensity at angle ¢ and
offset s.

Iy(s)

P¢(5) = —In I—o

(b) Direct Fourier reconstruction

e Take n projections p,(s) of the object.
¢ Find 1D Fourier transforms of the projections.

e Use the set of 1D Fourier transforms to tile the spatial frequency plane. Each
transform contributes a radial strip (w,¢), for a particular angle ¢, passing
through the origin.

e Resample this data to produce a regular sampling of the spatial frequency plane
in Cartesian coordinates (w,,w,). This involves interpolation to fill the gaps
between the radial strips.

e Take the 2D inverse Fourier transform.
Filtered backprojection

e Take n projections p,(s) of the object.

e Convolve each projection with the inverse 1D Fourier transform of |w|. Where
w is the distance from the origin in the spatial frequency plane.

e Backproject each filtered projection across the area to be reconstructed and
accumulate the values into the image.

(c) Low energy X-rays (gamma photons) are attenuated more than high energy ones,
it therefore follows that the deeper an X-ray beam penetrates into matter, the more
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its spectrum bunches up at the high energy end of the scale. This is known as beam
hardening.

In clinical radiology, the superficial absorption of softer photons gives a radiation
dose to the patient and serves only to distort the output of the imaging system,
creating streak artifacts and cupping. Cupping is the name for the effect where the
attenuation appears to be reduced towards the centre of the object.

It is therefore normal to pre-harden the beam using a beam hardening filter. This is
a piece of aluminium or copper that the beam has to pass through before reaching
the patient.

(d) Collimation is the process of ensuring that the direction of a gamma photon is
known when it is incident on a detector.

It is required for X-ray computed tomography in order to eliminate gamma photons
that have been subject to Compton scattering. It is achieved by using blocks of lead
with holes drilled through, such that only photons that are travelling in the correct
direction can get through.

It is required for SPECT and PET imaging in order know the line on which the
radiation was emitted. For SPECT, a lead block with holes is used as described
above. For PET, electronic collimation is used. This relies on the fact that when
a positron is emitted it combines with an electron to produce two gamma photon
travelling in opposite directions. The PET system is designed to detect coincident
arrivals at opposite sides of the subject (within 10 ns). From this information, we
can infer that the positron was emitted somewhere along the line joining the two
detectors which were activated coincidentally. Electronic collimation is much more
efficient than physical collimation with lead.

(e) A gamma photon from a particular radioactive decay has a known energy value. If
a photon is subject to Compton scattering then it’s direction and energy are changed.
Because the direction has been changed, the photon is now no longer any use in the
imaging process and only contributes distortion if detected. Gamma cameras are
designed to detect the energy as well as the number of received photons so we can
exclude low energy photons that have been subject to Compton scattering. This is
called energy filtering.

Assessors’ remarks: This was a multi-part question asking for brief descriptions
of a variety of concepts related to X-ray computed tomography, SPECT and PET.
The standard of the answers was generally excellent. The candidates seemed to have
a clear grasp of this part of the course. They were able to present an impressive level
of detail in their descriptive answers which resulted in a high average mark for the
question. All the parts of the question were answered well and there was no area of
discernible weakness.
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3. Bézier surface patches and radial basis functions

(a) The full definition for the z coordinate of a surface patch in terms of parameters
s, tis:

z(s,t) = SMpQ,MET”

where Q, is the measured data, T = [t* t2 ¢ 1], S = [s® s% 5 1], and ¢ and s both vary
from 0 to 1. However, the question only asks for the intersections of this surface with
the £ = 0 and y = 0 planes. These are simply Bézier curves in one parameter, so for
instance the intersection with the y = 0 plane is given by:

2(t) =TMp[0011]"

In addition, the ¢ parameter can be directly substituted for a scaled z parameter,
since:
z(t)=TMp[0123]" =3t

Combining and evaluating these give:

z(x) = % (9 —2z2) 2?
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(i) intersection with y = 0 (ii) intersection with z = 0

This curve is shown in bold in plot (i) above — note that it is not necessary to find
the actual curve equation in order to sketch it, we simply need to know how a Bézier
curve depends on the control points. It intersects the z = 0 plane only at z = 0 (the
other intersection at z = 3 is outside the range of the surface patch).

By a similar argument, the intersection with the z = 0 plane is given by:
4) = o= (4y— 9
2(y) = —= (dy —
) o7 Y Y
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This curve is shown in bold in plot (ii) above. It intersects the z = 0 plane at y = 0
and at y = %.

(b) It is not necessary to calculate the RBF itself. All that is required is to note
that the RBF must interpolate the original data (since it is directly inverted rather
than iterated), and that, since we are using the thin-plate spline, it will fit a smooth
function through the measured z data. This is enough to produce good curve sketches.
These are shown dashed in the plots above (here calculated from the actual RBF,
sketches approaching this form are acceptable). For the y = 0 plane, it should be
evident that the intersections with z = 0 are exactly at x = 0 and z = 1, since the
curve must interpolate the data. For the 2 = 0 plane, there are intersections at y = 0,
y = 1 and y ~ 2.57. The latter has been calculated numerically — it is enough to
note that this intersection must exist, and that it will be at a greater value of y than
for the Bézier curve.

L) oo

control mesh Bézier surface patch RBF interpolation

For completeness, the plots above show the actual surfaces using a Bézier patch and
an RBF. These sketches are not required in answering the question.

(c) The Bézier patch is simple to calculate, but it is not really appropriate for this
use. It only interpolates the corner points, not the others in the control mesh, so use
of the original data is biased. It cannot be extended to larger data sets, since there is
no way of overlapping the control meshes to correctly align the surface patches. A B-
spline patch would do the job much better. It does exhibit the convex hull property,
so that the entire surface will be limited by the range of the measured data.

The RBF fits the smoothest surface (in some sense) which will interpolate the original
data. It is hence arguably the best interpolant of the data. However, its use is limited
for very large data sets, due to the need to invert a very large matrix. For noisy
data it can be made to approximate rather than interpolate by inverting the matrix
iteratively rather than directly.

Assessors’ remarks: There was a lot of variability in the answers, with some
excellent and some very poor. Several candidates were unable to sketch the Bezier
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curves, either not realising that the full surface patch was not required, or thinking
that a Bezier curve should interpolate the points. Several also missed that it was
only required to note that the RBF should interpolate the points smoothly for a good
sketch. Part (c) was generally answered well, though only a couple of candidates
noted the inconsistency in interpolation when using a Bezier and suggested the much
more appropriate B-spline instead.

. Triangle lists and point normals

(a) (i) The following are examples of consistency checks which could be carried out
on this mesh (noting that it consists only of triangles, and that it represents an
isosurface contained in a 3D data set):

e Basic reference checks, i.e. all the triangles refer to points which exist (do not
contain numbers beyond the length of the point list) and all of the points are
used by at least one triangle. The former is trivial, for the latter we need to go
through each triangle, keeping a record of what points we have used, then at
the end check if any have not been used.

e Each triangle refers to three points which are all distinct. Here we must check
both that the references are distinct, and that the points that, these refer to are
in different locations.

e The vertex ordering is consistent in all the triangles. To check this, for each
triangle, find all the triangles which share an edge with it. In each of these other
triangles, the ordering of the vertices in this common edge should be reversed.

e The surface is watertight. We can check this by using the algorithm for calcu-
lating volume given in lectures (project each triangle onto a plane and sum the
subsequent triangular columns). If this gives us a different answer when we use
the z, y and z planes for our projection, the surface is not watertight. (Not
required for the answer, but note that we have to repeat this with three planes,
since this will only check for gaps in surface regions which are not orthogonal
to the projection plane. If we have a gap in the surface which is aligned with
the z plane, it will be orthogonal to the other two, so the apparent volumes for
these will be the same). Alternatively, we can follow the method for the next
check.

e No edges are shared by more than two triangles. We can check this by deter-
mining that each edge on each triangle is only involved in one other triangle.

e Triangles do not intersect each other. This is actually quite hard to check for.
We have to compare each triangle with every other triangle. The intersection
test involves finding the line of intersection of the planes containing each trian-
gle, then determining if this line of intersection passes through each triangle, by
looking at intersections between the triangle edges and this line, or alternatively
checking whether all three points making up the triangle are on one side of this



line. Even if this line does intersect both triangles, we still need to check that
the intersections overlap each other.

(ii) Other important issues for mesh storage formats are compactness (how much
memory is required for storage to a given accuracy) and ease of manipulation (how
difficult it is to perform common processing tasks on the storage format).

(b) (i) Given that the surface is an isosurface through 3D data, then the normal to
this isosurface at each point is simply the normalised vector gradient of the 3D data.
A simple way to estimate the vector gradient is to take central differences in all three
directions, centred on each point on the surface. A more accurate technique would
be to fit a B-spline in three parameters to the data and take derivatives of this spline
function numerically.

(i) Surface normals at each point can be worked out from the triangles containing
that point. The normal to a triangle is easily calculated from the cross-product of
two of the edges. However, since the point will be involved in more than one triangle,
we need to take an average normal of all these triangles to get a reasonable estimate
at the point. This estimate can be improved by weighting this average by the angle
each triangle subtends at the point.

Assessors’ remarks: A fairly straightforward, generally well answered question. It
was common, however, for candidates to lose marks by simply missing that part (a)
asked for a suggestion as to how the consistency check might be performed as well
as what consistency checks were useful. Several candidates were confused by (b)(i)
and wrote about triangle normals here, rather than noting that all we require is the
gradient of the original scalar function.

. Ray tracing and intersection tests

(a) Recursive ray tracing is a rendering technique which accounts for a degree of
indirect illumination. It elegantly combines hidden surface removal, transparency
effects and shadow computation into a single model.
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Simple ray tracing algorithms work in world coordinates. A ray V is fired from the
centre of projection through every pixel on the screen. When the ray strikes an object
at Py, further rays are spawned. One ray, L;, heads for the ith light source. If L,
passes through other objects on the way, then the illumination intensity is attenuated
by a shadow factor S;, depending on the number and opacity of objects in the way.

As well as these shadow feelers, the algorithm also spawns a reflection ray R;
and a refraction ray T,. The direction of the refraction ray is determined from the
refraction indices using Snell’s law. The intensity of the pixel is then

Iy = exloka + ) Sifartlpi(cakqly N + kg (R V)") + ko Loy + kel

where I, is the intensity of the reflection ray and I;y is the intensity of the refraction
ray. k; is a transmission coefficient in the range 0 to 1.

Values for I, and Iy are found by recursively evaluating the equation at the surfaces
R; and T; next intersect (P, and P3), with P; as the new viewpoint. So the progress
of the algorithm follows a ray tree:

R, T, R, T;

The tree is constructed top down, until either a ray fails to intersect an object or some
predetermined maximum depth is reached. The tree is then evaluated bottom-up, as
each node’s intensity is computed from its children’s intensities. Care must be taken
to prevent aliasing in the ray-traced image.

Ray tracing produces results with an unmistakable signature, far from perfect pho-
torealism. In addition to the aforementioned maximum tree depth, the two main ap-
proximations are (a) only specular reflection and refraction are considered, whereas
in reality there are diffuse interactions too, and (b) the Phong model, itself a gross
approximation, is employed each time a ray strikes a surface. There are a plethora of
other effects not accounted for by ray tracing, such as scattering and dispersal in air.

(b) (i) The object should occupy as much of the bounding volume as possible. Oth-
erwise, there is a high chance that a ray will intersect the bounding volume — trig-
gering a large number of individual polygon tests — but not intersect the object. An
elephant, being fairly spherical, would be a good candidate for a spherical bounding
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volume. A giraffe, on the other hand, would occupy a small proportion of a bounding
sphere, so an elongated cuboid would be a better choice.

(ii) A cuboid is defined by three pairs of parallel infinite planes, which we will denote
Pa1, Pa2, Pyt, Py2, P and Po. A ray can be defined parametrically as r = a + Ab.
We can trivially solve for the intersection of the ray with each infinite plane, obtaining
the six solutions Ag1, As2, Ay1, Ay, Az1 and Ae. The ray therefore lies between Py
and P,p when A is in the range A;; — Ag2, between Py; and Py when A is in the
range A\yi — Ay2, and between P, and P, when X is in the range \,; — A,2. To
be inside the cuboid, A must satisfy all three intervals simultaneously. If any two
of the A ranges are disjoint, the ray does not intersect the cuboid. An intersection
algorithm would therefore calculate the A ranges and check they all overlap. If the
Ay range is disjoint from the A, range, there is no need to calculate the A, range.

(¢) We would need to expand the z-buffer to record not only the z 3D screen coordi-
nate, but also the identity of the polygon whose rasterisation resulted in the z-buffer
entry, and where on the polygon the rasterised pixel lies. If we were to do this,
and run an otherwise standard z-buffer algorithm, the final z-buffer would contain,
for each pixel (and therefore each ray), the required information about the closest
polygon to the viewpoint. This is potentially much faster than a naive ray tracer:
instead of calculating the intersection of n polygons with m rays, we are simply pass-
ing n polygons through a standard surface rendering pipeline, with a slightly more
sophisticated z-buffer, but without the expensive illumination calculations.

Assessors’ remarks: This question tested the candidates’ understanding of recur-
sive ray tracing. It was mostly book work, with some extensions concerning bounding
boxes and efficient intersection tests. The few candidates who attempted the question
described the basic ray-tracing algorithm well in (a), and grasped the requirements
for an efficient bounding box in (b)(i). There were two plausible algorithms for the
cuboid/ray intersection test in (b)(ii). Only one student stated the need to store the
polygon identity in (c).

. z-buffers and 3D screen coordinates

(a) The z-buffer algorithm is used for hidden surface removal in most practical im-
plementations of the surface rendering pipeline. Earlier stages of the pipeline express
all polygon vertices in 3D screen coordinates (zs,ys, zs). 2, is a normalised repre-
sentation of a point’s depth, in the range 0 to 1. Nearby vertices have small z;,
distant ones have larger z;. Depth values for individual pixels are derived by bilinear
interpolation of the vertex values.

The z-buffer is an area of memory with the same dimensions as the frame buffer.
When we write a pixel into the frame buffer, we also write its z; value into the z-
buffer. If a subsequent polygon attempts to shade the same pixel as an earlier one,
we compare the new z; with the value currently in the z-buffer, and write over the
existing pixel in the frame buffer and the z-buffer only if the new point is nearer to
the viewer. Initially, all entries in the z-buffer are set to z, = 1.
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(b) (i) The diagram below (left) shows a typical relationship between z, and z;, in
this case for n = 5 and f = 25. Below right, we see the same relationship quantised
to 4-bit precision: this is not required by the question, but illustrates a point we’ll
return to in part (c).
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(ii) The mapping from view to 3D screen coordinates can be written as

W, d/ Trax 0 0 0 Ty
WyYs — 0 d/ymax 0 0 Yo
w2, 0 0  —f/(f=n) —fn/(f—n) || 2

w 0 0 -1 0 1

It is important that the mapping takes this form, since it means that the transfor-
mation between view and 3D screen coordinates is a projective one. This, in turn,
guarantees that lines map to lines and planes map to planes, which is essential if we
are to use any sort of linear interpolation at later stages of the rendering pipeline.  [25%)]

(c) With reference to the quantised sketch in (b)(i) above, z-buffer precision is going
to be more of a problem at the back of the view volume (where a broader range of
z, values map to the same quantised z-buffer value) than at the front. We therefore
need to ensure that points with z, values of —(200 — 0.1) map to the penultimate
quantised z-buffer value of 2 — 2, and not to 2¥ — 1. The largest value of z, that
will be stored as 2*¥ — 2 is infinitesimally less than 1 — 27%. The limiting value of k
should therefore map z, = —199.9 to z, = 1 — 2%, We therefore obtain the following
equation:

200(1 — 100/199.9)
200 — 100
s 27F = 50025 x 107
& —klog?2 log(5.0025 x 10™%)
&k = 10.965

1-27F =

il
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The minimum value of k to guarantee correct depth discrimination between objects
whose z, values differ by 0.1 is therefore 11.

(d) When n = 1 and f = 101, even though the depth range is the same, there
is more perspective compression since the ratio f/n is larger. We would therefore

require more bits in the z-buffer to discriminate between objects whose z, values
differ by 0.1.

Assessors’ remarks: This question tested the candidates’ understanding of 3D
screen coordinates and the z-buffer algorithm for hidden surface removal. Almost
all candidates provided a good description of the z-buffer algorithm in (a), though
remarkably few could sketch the relationship between z, and z, in (b)(i). Almost all
candidates showed a good grasp of the mechanics and significance of homogeneous
coordinates in (b)(il). Parts (c) and (d) were closely related to an examples paper
question that candidates should have been familiar with. However, only around
half the candidates realised that quantisation effects were most significant at the far
clipping plane and went on to derive the correct answer in (c), and only around a
third of the candidates knew what they were doing in (d).

Andrew Gee, Richard Prager & Graham Treece
May 2007

11

[30%]

[15%)






