ENGINEERING TRIPOS PARTIIB,

Friday 27 April 2007 9.00 to 10.30

Module 4C1

DESIGN AGAINST FAILURE

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.

Attachments:
Elasticity and Plasticity formulae (2 pages)
Fracture Mechanics Datasheet (8 pages)

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed

You may not start to read the questions
printed on the subsequent pages of this

question paper until instructed that you may
do so by the Invigilator




1 (a) Briefly explain the idea of a dislocation.

(b) Define the Burger’s vector of a dislocation, and explain how it is related to
the atomic spacing. With reference to the angle between the Burger’s vector and
dislocation line, state the difference between an edge dislocation and a screw
dislocation.

(c) Sketch a tilt boundary made up of edge dislocations of like sign, and hence
explain why the grain size of a crystal can be reduced by cold deformation.

(d) An edge dislocation is placed at the origin of the (x,y) Cartesian reference
frame of Fig. 1. The dislocation has a Burger's vector 5, along the +ve x-axis, and
exists in a crystal of shear modulus G and Poisson ratio v. The stress field around the
dislocation is given by
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Now introduce a second dislocation at position (x,,y,) and with a Burger's vector of
magnitude b, aligned in the -ve x-direction. Calculate the glide force f, and climb
force f, exerted by dislocation 1 on dislocation 2. (Hint: the dependence of the climb

force on direct stress has a similar form to that of the glide force on shear stress.)
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2 (a) Distinguish between diffusional flow and power-law creep as creep
mechanisms in a metallic alloy. For each of these mechanisms write down a simple
equation relating tensile stress ¢ to steady-state tensile strain-rate & at constant
temperature.

(b) Using the results of (a), plot log(£) at constant temperature 7' against
log(o) and hence explain why the extrapolation of creep data obtained for one
mechanism is dangerous when predicting the creep-rate governed by another
mechanism.

(¢) Two rigid plates are held together at high temperature by a pre-tensioned
steel bolt. The bolt has a Young’s modulus E and an initial pre-tension o;,.

Thereafter, its axial stress o decays with time ¢ due to power-law creep. Obtain an
expression for o(t) .
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3 (a) What are the physical origins of an R-curve in metals and in ceramic matrix
composites? Explain how the R-curve can be used to calculate the tensile fracture
strength of a panel containing a central crack of length 2a4. [30%]

(b) A crack in an elastic isotropic solid is subjected to mode II loading. Sketch

the path of subsequent cracking and explain how this path is influenced by the presence

of a T-stress. [30%]
(¢) Explain briefly the concepts of small scale yielding and large scale yielding. [25%]

(d) Explain the dependence of the mode I fracture toughness upon thickness for
a cracked sheet made from an aluminium alloy. [15%]



4 (a) A plate contains an edge crack of length @ and is subjected to a tensile load
P . Show that the energy release rate G is related to the compliance C by
_P?aC
" 2B da
where B is the thickness of the plate. [30%]

(b) Two uniform elastic strips are each of height /2 and of unit thickness into
the page, see Fig. 2. The strips are made from a solid of Young's modulus F, and are
adhered together except for a central portion of length 2a, as shown. The toughness
G/c of the adhesive is measured by subjecting the bilayer to 4-point bending, using an

inner span of length 2L between the upper rollers and an outer span of (2L +2s)

between the lower rollers, see Fig. 2.

(1) Using simple beam theory, obtain an expression for the stored elastic
energy in the bilayer in terms of the applied load P. Thereby determine the
compliance C of the specimen. [40%]

(i)  Determine the mode I toughness G- of the adhesive in terms of the

critical load P, at which fracture occurs. [30%]
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Engineering Tripos Part IIA THIRD YEAR

Paper G4: Mechanics of Solids
ELASTICITY and PLASTICITY FORMULAE

1.  Axi-symmetric deformation : discs, tubes and spheres

Discs and tubes Spheres
d(row) 1 d(r2oy)
Equilibrium Ogg = —gq;  + pwir? Oy = ar
, B 3+v Eart B
Lamé’s equations (in elasticity) Op = A — Z -8 pw?r2 — Tz—f rTdr Or = A — 3
c
B v o, Eaf B
Ogs= A + 2 T~ T8 pwTt + 3 rTdr — EaT o = A + >3

<

2. Plane stress and plane strain

Cartesian coordinates Polar coordinates
. Ju du
Strains Exx = Ty or = 35
(14 u lov
&y = 3y g0 =3 + 730
w o o Loy
xy = 9y * ox 0 = 3r *+ 730 - F
32y, d2¢, 32 a [ o d degp d¢, d2¢,
oy eqe X! _ XX !2 v hafgsc) _ = __E_ T
Compatibility WAy = gt Tox2 ar {r ae} = or {f2 ar | } “ Tt G@
. . . 82 92 2 190 1 82
or (in elasticity) w2t W (Oxx + Oyy) =0 2t rart g (Ot ooy = )
o d0xx 90k 9 L
Equilibrium - * Ty =0 37 (ron) + 35 — Opp = 0
9 d0xy dogg @
"%X+ Ix =0 30 +5'r'(r0',9) +Ore=0
" o 2 Rl % 92 19 192
V4¢ = 0 (in elasticity) E) + 6y2 92 + 6y2 = £ +TFF EY:)
Po 105 1%
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. . ¢ 109  19%
Airy Stress Function Oxx = ﬁ Or = F3r + 3@
32¢ a2
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3.  Torsien of prismatic bars

. dF dF
Prandt] stress function: 0Oy (=7) = & o %y =) =~
Equilibrium: T = 2[rda
A
Governing equation for elastic torsion:  V2F = -2GB  where B is the angle of twist per unit length.
4. Total potential energy of a body
N=U-w
where = % j el[Dledv , W=PTy  and [D] is the elastic stiffness matrix.
14
5.  Principal stresses and stress invariants
Values of the principal stresses, op, can be obtained from the equation
Oxx — Op (&37 Oxz
Oxy  Oyy—0p  Op =0
Oxz Oyz Oz — Op

This is equivalent to a cubic equation whose roots are the values of the 3 principal stresses, i.e. the possible values of op.

Expanding: op> —Tjop? + Loop — I3 = 0 where [} = 0gy + Oyy + Og,

Gxx Oxy Oxz
Oyy Oyz Gxx Oxz Oxx  Oxy

I = + + and I3 = Oxy Oyy Oyz
On On O On Gy Oyy

Oxz Oyz Oz

6. Equivalent stress and strain

- 1
Equivalent stress & = ‘\/;' ( (01-m)? + (o —-3)? + (03-01)%, 12

) . - 2 12
Equivalent strain increment de  ="\[7 [ d&;? + de? + des?,

7.  Yield criteria and flow rules

Tresca
Material yields when maximum value of loy -~ o2l lon— o3l or los— o0yl = Y = 2k, and then,
if o3 is the intermediate stress, dej:dey:dez = A(1:-1:0) where A #0.
von Mises
Material yields when, (01 — 02)2 + (03— 03)2 + (03—01)2 = 2¥2 = 6k%, and then
dey dey des dey —dey dey —de3 des ~dey

3
g1 = 02 T 03 = o-; = om-o = o-o = A=72
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ENGINEERING TRIPOS PART IIB
ELECTRICAL AND INFORMATION SCIENCES TRIPOS PART II

B1 DEFORMATION AND FRACTURE

FRACTURE MECHANICS DATASHEET

Crack tip plastic zone sizes

( 2
l(&J Plane stress
r| oy

diameter, d b =19

2
—1— EI— Plane strain
L 3 oy

Crack opening displacement

( 2
-I—{I— Plane stress
yE
S =4 )
l—K——I— Plane strain
2 O'yE

Energy release rate

—1-K12 Plane stress
E

1—v?

K?  Plane strain

2
Related to compliance C: G=—1- £ fiE
2 B da



Asymptotic crack tip fields in a linear elastic solid
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Crack tip stress fields (cont'd)

Mode II
= Ky cos — sin— cos—
\27r 2
Oy = — Ky sinﬁ (2+cosgcosﬁj
N2TTr 2 2 2
Ky 9( . 8 39}
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Tables of stress intensity factors
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a
= h«aand h«b
mlh B ¢

w K]:J;;‘HEIA H«a and Heb

| 1-v? Plane stress
, L o= {

1-3y2 - 243

Plane strain
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1.6
K1=—L£o ra ¢15 /|
L6)] : /
1.4 /
% c2 g2 5 '% 13 /’
D= 1- 5 sin“@ | dO 1.2 7
c
0 1.1 V4
1
OO 0.2 04 0.6 08 10
o/

K;=0wrTta F(g)
r

value of F (a/ r)T
Ooo 0% One crack Two cracks
- —_ i
ol ak .
! = U B U B
o;olv l l r l l Jr Jy l 0.00 336 2.24 3.36 224

0.10 2.73 1.98 2.73 1.98
0.20 2.30 1.82 241 1.83
0.30 2.04 1.67 215 1.70
0.40 1.86 1.58 1.96 1.61
0.50 1.73 1.49 1.83 1.57
0.60 1.64 1.42 1.71 1.52
0.80 147 1.32 1.58 1.43

1.0 137 122 145 1.38
1.5 1.18 1.06 1.29 1.26
2.0 1.06 1.01 1.21 1.20
3.0 0.94 0.93 1.14 1.13
5.0 0381 0.81 1.07 1.06
10.0 0.75 0.75 1.03 1.03
o0 0.707 0.707 1.00 1.00

+U = uniaxial 0, B =biaxial 0O,,.
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