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Module 4C4

DESIGN METHODS

Answer not more than three questions.

All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is
indicated in the right margin.
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1 A mechanical human-powered device is needed to pick up, lift and place concrete
paving slabs. It must be capable of picking up different sizes and shapes of slab from a
horizontal stack not more than five slabs high, transport the slab to where it is to be placed
and set the slab down adjacent to previously laid slabs.

Slabs may range in thickness from 30 to SO mm, and be rectangular, square or hexagonal in
shape with a maximum nominal size of 600 x 900 mm. Allowance should be made for
limited access to the slab-laying location through a 700 mm wide gate.

(a) List ten requirements for your new slab mover, identifying them as demands or
wishes.

(b) Establish the overall function for your slab mover and define a process function
structure, identifying up to 10 sub-functions.

(c) Derive a table showing at least two solution-principles for each of three or four
key sub-functions and identify three possible product concepts based on these solution-
principles. Use sketches to describe the concepts.

(d) Draw up an evaluation chart to compare the relative merits of the three
concepts, identifying the one that most closely matches your proposed requirements.

Comment on the results of the evaluation.

(¢) Summarise briefly the main selling features of your chosen concept.

[10%]

[20%]

[40%]

[20%]

[10%]
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2 A company designing and supplying desktop printers to the international business
market wishes to introduce a novel printing technology using existing paper handling
systems.

(a) Describe the elements of good risk management that enable the successful
delivery of a new product to market. [50%]

(b) Identify ten risks that might inhibit the company’s ability to launch the new
product at a prestigious trade show. [20%]

(c) Devise a risk management strategy that will improve the company’s chances of
achieving a successful launch, indicating how the most critical risks identified in (b) might
be avoided. [30%]

(TURN OVER
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3 A small wind turbine generator is intended to provide the domestic electricity power
requirements of a household at a windy location. The household power demand P, may

be approximated as a normally distributed random variable with a mean upp = 0.5 kW
and a standard deviation of o pp = 0.15 kW.

The mechanical power generated P; by a wind turbine is given by

1 3
Pg =2 CpApU

where Cp,= 04 is the coefficient of performance, A is the area swept by the turbine

blades, p =1.3 kgm'3 is the air density and U is the wind speed. The wind speed may

be approximated as a normally distributed random variable with a mean g = 10 ms™!

and a standard deviation of oy =3 ms™.. You should assume that the efficiency of the

turbine generator is very high and that it is able to generate over the full range of wind
speeds encountered. The electrical power generated may therefore be taken to be equal to
Fs.

(a) If the diameter of the wind turbine blades D = 2 m find appropriate
approximations for the mean up; and standard deviation opg of the power generated.

(b) Find the approximate proportion of time that the power demand Pp, should be
expected to exceed the generated power FPg. You should use 2°! moment analysis and

assume that the probability density function of P is approximately normal.

(c) What diameter D of the turbine blades would ensure that the power demand
should only exceed the power generated for 10% of the time?

[50%]

[25%]

[25%]
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4 (a) Starting from the Taylor series expansion for the value of a function f(x) ata
point x;,; near apoint x4, derive Newton’s Method, i.e. show that successive estimates
of the location of the minimum of f(x) are given by

Xpe1 = X —H(xp) 7 VF(x4)

where Vf isthe gradient of f and H is its Hessian. Briefly ~discuss some of the

advantages and disadvantages of Newton’s Method.

(b) To minimise the bearing load F of a dual bailer twister drive mechanism an
engineer can adjust L, the distance between the traverse bar and the mechanism pivot, and
R, the distance from the pivot to the attachment point of the connecting rod. Analysis
shows that

F «x Z(LZ+L"_£+M1) +Mou
u\ I 3

where u=R/L, J is the effective moment of inertia of the mechanism, m is the mass per
unit length of the arm connecting the mechanism to the traverse bar, M7 is the mass of the
twister and M, is the mass of the connecting rod. For the design under consideration

J=2kgm2, m=3kgm‘1, M;=8kg and M, =5kg.

(i) Taking the control variables to be L and u, complete one iteration of
Newton’s Method from an initial solution Ly =1m and uq=1.

(i) Using appropriate optimality criteria find the values of L and u that
minimise F, and hence comment on the performance of Newton’s Method
observed in (b)(i).

END OF PAPER

[30%]

[45%]

[25%]
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1.0 OPTIMIZATION
DATA SHEET

1.1 Series
Taylor Series
For a function of one variable:
f(xk +0)= flg)+of '(xk)+%62 f™(x;)+... where xp,q=xg+0
For a function of several variables:

f(§k+§§)=f(§k)+{Vf(§k)}t_§_x+ @tH(Jgk)ﬁ_)g+... where X, .4 =X; +90Xx

1
2
where {Vf ()_c k )}t is the Grad of the function at x; :

[af@k) of(x¢) of(x)

X1 X o X p

and H(gk) is the Hessian of the function at (ék):

[ 2fly)  APrly) | 9%lx)]

8x12 0x10 X2 0x10 X

" flxi.)

6X26 X1

Pr) M) i)

90X ,0 X1 0Xp0 Xo X

Note: 1. Vf ()_c k) is defined as a column vector.

2. The Hessian is symmetric.
3. If f(x) is a quadratic function the elements of the Hessian are constants and

the series has only three terms.



1.2 Line searches

Golden Section Ratio = ‘/52’1 ~0.6180
Newton’s Method (1D)
When derivatives are available: X1 =X ~ PV (e )}

When derivatives are unavailable:

_1 (xzz "x32)f(x1)+ {x32 —xlz)f(xz)Jr (xlz - xzzjf(xs)
2 (xg~x3)f(xy)+ (3 — 3y )f () + (x1 - xp) Fx3)

1.3 Multidimensional searches

Conjugate Gradient Method

To find the minimum of the function

fx)="f (§0)+ \% (’Eo)t ox+ %61’H6_)_g , where 0x = x - x, and X has n dimensions:

First move is in direction s from Xwhere:

s9 =~ Vflxo)
Then X1 =X + QS
t
-5 VIlx
where o, = ‘k—(“k) which minimises f(x) along the defined line
k ; g
sy Hsy
Then Spa1 ==V (e ar)+ Besy
\% H
where B = ALTIYR: O
sx Hsy,

For a quadratic function, the method converges at X .



Fletcher-Reeves Method

To find the minimum of the function f(x) where x has n dimensions:

First move is in direction sy from x( where:

5o == V£ (xo)
Then X1 =X + g sy such that f(x) is minimised along the defined line.
Then Skt == V(o) + Besye

" (e
" P " )P

For quadratic functions, the method will converge at x , . For higher order functions,
the method should be restarted when X, is reached.

1.4 Constrained Minimisation

Penalty and Barrier functions

The most common Penalty function is:

a(px)= £ (x)+ %i (max[0, )] P

i=1
where f{x) is subject to the constraints g; @) <0,....8p (x)=0

A typical Barrier function for the same problem is:

)= 1)~ 1S 1)
i=1



2.0 STATISTICS DATA SHEET

21 Standardised normal probability density function
A
f(2) a _z;z
Pz<a)= \/—_.— f 2d
--00
x —
\ o
) a z
z 0.00 0.01 0.02 0.03 0.04 005 0.06 0.07 0.08 0.09
0.0 5000 5040 5080 5120 5160 5199 5239 5279 5319 5359
0.1 5398 5438 5478 5517 5557 5596 5636 5675 .5714 5753
02 | .5793 5832 5871 .5910 .5948 5987 .6026 .6064 .6103 .6141
0.3 6179 6217 .6255 .6293 6331 .6368 .6406 .6443 .6480 .6517
04 6554 .6591 6628 .6664 .6700 .6736 6772 .6808 .6844 .6879
0.5 6915 6950 .6985 .7019 .7054 7088 7123 7157 .7190 .7224
0.6 1257 1291 7324 7357 7389 7422 7454 7486 7517 .7549
0.7 7580 7611 7642 7673 7704 7734 7764 7794 .7823 7852
0.8 7881 7910 .7939 7967 7995 .8023 .8051 .8078 .8106 .8133
0.9 8159 8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389
1.0 8413 8438 8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 8643 8665 8686 .8708 8729 .8749 8770 .8790 .8810 .8830
1.2 8849 8869 .8888 .8907 .8925 .8944 8962 .8980 .8997 .9015
13 9032 9049 9066 9082 9099 9115 9131 9147 9162 9177
1.4 9192 9207 9222 9236 9251 .9265 .9279 9292 9306 .9319
15 9332 9345 9357 9370 9382 9349 9406 9418 9429 9441
1.6 9452 9463 9474 9484 9495 9505 9515 9525 9535 .9545
1.7 9554 9564 9573 .9582 9591 .9599 9608 .9616 9625 .9633
1.8 9641 9649 9656 .9664 9671 9678 9686 9693 9699 9706
1.9 9713 9719 9726 9723 9738 9744 9750 9756 9761 9767
2.0 9772 9778 9783 9788 9793 9798 9803 9808 9812 9817
2.1 9821 .9826 9830 .9834 9838 9842 9846 9850 9854 9857
2.2 9861 9864 9868 9871 9875 9878 9881 .9884 .9887 .9890
23 9893 .9896 .9898 9901 9904 9906 .9909 9911 9913 .9916
24 9918 9920 9922 .9925 9927 9929 9931 .9932 9934 9936
2.5 9938  .9940 .9941 .9943 9945 9946 9948 .9949 9951 .9952
2.6 9953 9955 9956 9957 9959 9960 9961 9962 .9963 .9964
2.7 9965 9966 .9967 9968 9969 9970 .9971 9972 9973 9974
2.8 9974 9975 9976 9977 9977 9978 9979 9979 9980 .9981
2.9 9981 9982 9982 .9983 9984 9984 9985 9985 9986 .9986
3.0 9987 9987 9987 9988 .9988 .9989 .9989 .9989 9990 .9990
3.1 9990 .9991 9991 .9991 .9992 9992 .9992 .9992 9993 9993
32 9993 9993 9994 9994 9994 9994 9994 9995 9995 9995
33 9995 9995 9995 9996 9996 9996 9996 9996 9996 .9997
34 9997  .9997 9997 .9997 9997 9997 9997 9997 9997 .9998

TABULATED VALUES




2.2  Moments of a randomly distributed variable

Expectation

Elg()]= [g(x)f(x)dx

Central and non-central moments

Moment Definition Name Normal
Distribution
1% non-central Elx]= u, Mean H
1* central Elx-pu.]=0 0
nd .
2" central E|(x- ﬂx)Z _ O_xz Variance o2
d
3" central E L(x _ #x)3 . Skew 0
th A
47 central E ( X piy )4J Kurtosis 3 0.4

Due to its symmetry the odd central moments of a normal distribution are all zero.
The even central moments of a normal distribution are given by:

Relating central and non-central moments

Efx- )" |- E

i i=0

:0(’;]x"<—ux)”“’] = 3 emor el

E[an = E[((x ~ Hy) + ,ux)nJ = i(?]E (x";ux)i]uxn_i
i=0



2.3  Combining distributed variables

For the function y=flx,%,...x,)

where x1, x, etc. are independent and defined by their respective distributions:

Exact formulae for one and two variables

Yy ﬂy () _)’2

1 x+a Hy +a o'xz

2 ax au, azaxz

3 arxy +azxy ayy +aytn 420 + ay’o?

4 x1% R wmPor” + mPo + o’y

. 5. @ormal X1/Xo ny/po 1 ,11120'22 + #220'12
distributions only) 7 2 2
. H My +02

Where: ¢ = mean; o = standard deviation; a = constant.

Approximate formulae

1 [62 2 a2 2
Hy ~ [, p0,)+ —é} of + —j—;- 05+ bt s
H

2 laxl

2 2
a a
0,2 ~ L/ O'f‘+—L 0'%+....
Y dxq dx
u 2]u







