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1 Figure 1 shows a foundation on uniform clay, with undrained strength s,. The
foundation has width B and length L, which can be idealised as deforming in plane
strain (L>>B). The water level is at ground level. The foundation base cannot sustain
tension.

(@) Considering only the vertical load ¥ and applied moment M acting on the
foundation, and using Meyerhof’s effective area method, show that the permissible V-M

loading combination is,
m=Br Y
2 v

ult
where V, is the undrained uniaxial vertical bearing capacity.

(b) If the vertical load V is 1.5BLs, and moment M is 0.2B°Ls,, calculate three
factors of safety: on V alone increasing, M alone increasing and the combined V-M
loading increasing in proportion. Indicate the types of failure in each case using a V-M
interaction diagram.

(c) If the V-M loading remains the same as in part (b), calculate the maximum
horizontal load H that can be applied to the foundation. You may assume lift-off is
possible.

(d) Using a sketch, explain how a skirted foundation resists lift-off for short
term loading and state any extra benefits of such a foundation compared to the one
shown in Fig. 1.
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2 Figure 2 shows the plan of a flexible raft foundation for a new building. The net
bearing pressure is to be 300 kPa (allowing for the weight of the excavated soil) at the
foundation level, which will be 1 m below ground level. The water table is 1 m below
the ground level.

(a) Assuming the subsoil to be clay of shear modulus 6 MPa, estimate the
immediate (undrained) settlement at points A, B and C. Hence evaluate the deflection
ratio of the foundation. (The stiffness of the foundation raft and the building can be
neglected.)

(b) Estimate the immediate average settlement of the foundation if the borehole
data from the site showed that the subsoil is over-consolidated clay, from ground to a
depth of 16 m, overlying bedrock. The shear modulus of the clay is given as 6 MPa
from ground level to a depth of 6 m and 10 MPa for the rest.

(c¢) Estimate the drained settlement at point B by dividing the subsoil into two
layers of thickness 5 m, and 10 m. The coefficient of one-dimensional compressibility
of the clay is m, (MPal) = 1/(¢",)*°, where o, (kPa) is the vertical effective stress. The
bulk unit weight of the clay is 20 kN/m’.

(d) Explain why the actual settlement that occurs can be different from the
estimate in part (c) and how it could be better estimated.

25m
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< =1

5m
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3 (a) An engineer is investigating the vertical capacity of a hammer-driven
closed-ended tubular pile of outer diameter 0.6 m in two different sites. The pile length
is 20 m. Site A has saturated sand of relative density 50% and friction angle ¢, of 30°.
Site B comprises normally-consolidated soft clay with a peak undrained shear strength
profile of s,= 15z kPa, where z (m) is the depth below the ground surface. The effective
unit weight 7’ can be taken as 10 kN/m? in both sand and clay.

(i) Assuming the pile-soil interface friction to be 25°, calculate the
vertical capacity of the pile in site A using the API (2000) design method.

(i) Calculate the vertical capacity of the pile in site B using the API
(2000) design method and explain why this calculated capacity may not be
available soon after the pile installation.

(b) Describe friction fatigue and sketch the variation of shaft resistance with
depth for piles of length L and 2L. Comment on whether the API method makes an
appropriate allowance for friction fatigue.

(c¢)  Tubular piles can be open-ended. By considering the vertical equilibrium of
a slice of soil inside an open-ended tubular pile of internal diameter D as shown in Fig.3,
show that the vertical effective stress at the base of the plug gpn, can be given as below,

q plug — eﬂ ~1
y'h, A
where 4, is length of soil column within the pile, y” is the effective unit weight and

A=4Bhy/D. The shear stress acting between the soil and the pile is 7= fo’, where o', is
vertical effective stress and S is constant.
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4 A shallow water wind turbine is supported by a single steel monopile of diameter
2 m and wall thickness 30 mm. The design horizontal load for the pile is 1 MN applied
6 m above the mudline. The ground comprises normally consolidated clay with an
undrained shear strength s, = 2z kPa, where z (m) is the depth below the mudline. The
effective unit weight ’ of the clay is 6 kN/m?.

The Young’s modulus E and yield stress o, of the steel can be taken as 180 GPa and
200 MPa respectively.

(a) Estimate the minimum length of the pile below the mudline that can provide
the required lateral capacity.

(b) If the design horizontal load is to be increased to 3 MN applied 6 m above
the mudline, estimate the length of 2 m diameter pile below the mudline and the new
wall thickness that is required.

(c¢) Estimate the pile settlement at the mudline if the pile length below the
mudline is 30 m and the pile is loaded only with a vertical load of 4 MN. You may
neglect pile compressibility and assume that the shear modulus of the clay is 150s, and
its Poisson’s ratio is 0.2.

(d) Explain why pile compressibility may be important in assessing pile
capacity of long piles.

END OF PAPER
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Section 1: Plasticity theory

This section is common with the Soil Mechanics Databook supporting modules 3D1 and 3D2.
Undrained shear strength (‘cohesion’ in a Tresca material) is denoted by s, rather than c,.

Plasticity: Tresca material, T, = s,

Limiting stresses

Tresca o1 —05| = qu=2sy

ontises (o, ) +(s, ) + (o, -p) - 20z = 252

g.= undrained triaxial compression strength; s,= undrained plane shear strength.
Dissipation per unit volume in plane strain deformation following either Tresca or von Mises,
8D =s,bg,

For a relative displacement x across a slip surface of area A mobilising shear strength sy,

this becomes
D = Asyx

Stress conditions across a discontinuity:

Rotation of major principal stress

T
0=n2-Q
Su _ _ .
Tp Sg — Sa = As = 2s,8in0
G — C4a = 23u sin ©
G Inlimitwith 6 —» 0
ds = 2s,d0
Useful example:
I S4a 0 = 30°
Q2 =n/4 —-0/2 \‘ Cp G1g — G1A= Sy
| l
5 A \ — Tp' 5 w/sy = 0.87
N - —
B ~
))(/\ / 1 61A = major principal stress in zone A
C1B / o _
discontinuity 1B = major principal stress in zone B



Plasticity: Coulomb material (t/c’)max = tan ¢
Limiting stresses
sin ¢ = (0"t~ 6's)/( 0’ 1s+ O'31) = (O4s- o)/ O15 + O3¢- 2U)

where ¢'ys and o'y are the major and minor principal effective stresses at failure, oy and o3
are the major and minor principal total stresses at failure, and u is the pore pressure.

Stress conditions across a discontinuity

Rotation of major principal

. stress
!
¢ 0=n2-0
D
o1a = major principal stress
Q in zone A
b
o o.s = major principal stress in
zonhe B
| '
Sy c Sy o c
A GD 1A B tand = ™D / 0"D
A

sin Q=sind/sin ¢’

s'p/s’a = sin(Q + 8) / sin(Q2 — d)
Inlimit,d® - 0andé — ¢
ds'= 2s’. d6 tan ¢’

Integration gives s’g/s'as = exp (20 tan ¢’)

1B /
Q- 8)2/



Section 2: Bearing capacity of shallow foundations
2.1 Tresca soil, with undrained strength s,,.

Vertical loading

The vertical bearing capacity, g, of a shallow foundation for undrained loading (Tresca soil)
is:

V,
Tu“ =q; = ScchcSu +vh

Vut and A are the ultimate vertical load and the foundation area, respectively. h is the
embedment of the foundation base and y (or y') is the appropriate density of the overburden.

The exact bearing capacity factor N, for a plane strain surface foundation (zero embedment)
on uniform soil is:

Ne=2+nm (Prandtl, 1921)

Shape correction factor:
For a rectangular footing of length L and breadth B (Eurocode 7):

se=1+02B/L
The exact solution for a rough circular foundation (B/L=1) is g~ 6.05s,, hence s.= 1.18~ 0.2.

Embedment correction factor:
A fit to Skempton’s (1951) embedment correction factors, for an embedment of h, is:

de=1+0.33 tan™ (h/D) (or h/B for a strip or rectangular foundation)
Combined V-H loading

A curve fit to Green'’s lower bound plasticity solution for V-H loading is:

2
vV 1 1 H H \
If VIV > 0.5: — =t 1-— or —=1—[2—~1]
Vult 2 2 Hult Hult Vult
If VIV <0.5: H = Hy = Bs,

Combined V-H-M loading

With lift-off.  combined Green-Meyerhof (V' = bearing capacity of effective area B-e)

VIV <0.5: A = (l - 2£J
H VB

ult

2 2 3
Without lift-off: (Vl_] +[ M [1 -0.3 H ﬂ + (Hi] ~1=_0 (Taiebat & Carter 2000)

ult ult ult uit



2.2 Frictional (Coulomb) soil, with friction angle ¢.

Vertical loading

The vertical bearing capacity, q;, of a shallow foundation under drained loading (Coulomb
soil) is:

Vult

y'B
A Ny 5~

=qs = Squo' vo+Sy

The bearing capacity factors Nq and N, account for the capacity arising from surcharge and
self-weight of the foundation soil respectively. o’y is the in situ effective stress acting at the
level of the foundation base.

For a strip footing on weightless soil, the exact solution for N is:

Nq = tan®(n/4 + ¢/2) e™" 9 (Prandtl 1921)
An empirical relationship to estimate N, from N, is (Eurocode 7):
Hor MIB T
NY =2 (Nq - 1) tan (]) Failure envelope
Curve fits to exact solutions for Maximum[ :
t ' t

N,= f(¢) are (Davis & Booker 1971):

Rough base: N, =0.1054¢%%
Smooth base: N, =0.0663¢*%

Shape correction factors:

For a rectangular footing of length L
and breadth B (Eurocode 7):

sq=1+(Bsin¢)/L
s,=1-03B/L

For circular footings assume L = B. MIBVin

Combined V-H loading

The Green/Sokolovski lower bound solution gives a V-H failure surface.

Combined V-H-M loading
(with lift-off- drained conditions- see failure surface shown above)

[H/V““T+{M/BV“"T{ZC(M/BV“")(H/V““)]:{—\/—[1_lﬂz

th tm thtm Vull Vult
where C = tan(zP(t“ "zttm:(th “m)] (Butterfield & Gottardi 1994)
h*m

Typically, t,~0.5, tn~0.4 and p~15°. t, is the friction coefficient, H/V= tan ¢, during sliding.



Section 3: Settlement of shallow foundations

3.1 Elastic stress distributions below point, strip and circular loads

Point loading (Boussinesq solution) p
3
Vertical stress o, = §Pi5 r
27R R
. P |3r’z (1-2v)R
Radial stress C, = > T
27nR*| R R+z (r.z)
Tangential stress o, = P(1_22V) R _z
271R? |R+z R z\|
3Prz?
Shear stress =—
ear T, 2R a
Uniformly-loaded stri q‘{'“‘
niformly-loaded strip X
q @)
Vertical stress o, =—|o+sinocos(a + 28)]
T
Horizontal stress cy = —q[a —sino.cos(a + 26)] o
T h
z
Shear stress Ton = ﬂsin o sin(o + 28) Gy
i

Principal stresses

o, =—3(a+sina) g, =g(a—sina)

T
158 208
Uniformly-loaded circle
(on centerline, r=0)
0.58 — 058
Vertical stress
1.08 1.08
3
q 1 1 2 1.58 1.58
o, = e e —
Y 1+(alz)?
2,08 \ 2.08
Horizontal stress 2.58 2.58
2(1+v)z z3 3.08 3.08
Oh =ﬂ (1+2v) - 2( 2)1/2 t 213/2
2 (a®+z%) (a® +z°)
158 358
4.08 4.08

Contours of vertical stress below uniformly-loaded
circular (left) and strip footings (right)



3.2 Elastic stress distribution below rectangular area

The vertical stress, o, below the corner of a uniformly-loaded rectangle (L x B) is:

Gz= |rq

I is found from m (=L/z) and n (=B/z) using Fadum'’s chart or the expression below
(L and B are interchangeable), which are from integration of Boussinesq’s solution.

1 { 2mnVym? +n? +1 [mz +n? +2]+tan“[ 2mnvym? +n? +1 ﬂ

L
" 4n

m? +n% +m?n? +1{ m? +n? +1 m? +n% —=m?n? +1

0.28

[ L TTT] {

[ 7 e/ n.

0.26 7—-: —~ -
an q

0.24—7F 7| ; _2.({

0.22——_;_. i"z / E

/
0.20 B 4

0.18 4A L

4% .
0.16 /4/ 0.6
, 0.14 ///V / O.L

\\
N
N

~
N

0.12 / /1/ // 0.4

0.10 7 //f///// —

0.08 / // ?/ //,/

0.06 /é//‘,/ //// 1 0.2

0.04 % pd ://, -1 T -

0.02 %:;/ — =

o /] 0
1

1 10

m

0.

Influence factor, |,, for vertical stress under the corner
of a uniformly-loaded rectangular area (Fadum’s chart)



3.3 Elastic solutions for surface settlement

3.3.1 Isotropic, homogeneous, elastic half-space (semi-infinite)

Point load (Boussinesq solution)

. 1 (1-v)P
Settlement, w, at distance s: w(s) = ——(—V«)—
2n G s
Circular area (radius a), uniform soil
Uniform load: central settlement: w,_ = “év)qa
edge settlement: w,_ = ~2~$1—_ﬁqa
n G
Rigid punch: (Qavg= V/na®) w, = %(1 év) g @
Circular area, heterogeneous soil G, Gytma G
For Go=0, v=0.5:
a
w=g/2m under loaded area of any shape I
- z m
w=10 outside loaded area
10
For Go> 0, central settlement:
w =9 1 =
o 2G0 circ /7
— ~ qa <1 V=0 /
Forv=05 w, » —— 10 =05
2(G, +ma) L A3
circ
02 iz
Rectangular area, uniform soil e
: 10° /
Uniform load, corner settiement: //
_{-v)aB, 10°
[+3 G 2 rect
. 10‘:04 10°  10°? 16“ 1 10
Where |t depends on the aspect ratio, L/B: Go/ma
L/B Irect L/B 'rect L/B lrect L/B Irect
1 0.561 1.6 0.698 24 0.822 5 1.052
1.1 0.588 1.7 0.716 2.5 0.835 6 1.110
1.2 0.613 1.8 0.734 3 0.892 7 1.159
1.3 0.636 1.9 0.750 3.5 0.940 8 1.201
1.4 0.658 2 0.766 4 0.982 9 1.239
1.5 0.679 2.2 0.795 4.5 1.019 10 1.272
- vBL
Rigid rectangle: w, = { GV) qav92 | e Where lrgq varies from 0.9—0.7 for L/B = 1-10.

Note: G =

2(1+v)

where v= Poisson’s ratio, E= Young’s modulus.



3.3.2 Isotropic, homogeneous, elastic finite space
Elastic layer of finite thickness

The mean settlement of a uniformly loaded foundation embedded in an elastic layer
of finite thickness can be found using the charts below, for v~0.5.

W = Holdy 98 E =2G(1+v)

E

The influence factor pq accounts for the finite layer thickness. The influence factor po
accounts for the embedded depth.

1.0q

L =length »=0.

T Y. q | dgigriad

° L |
09

H \._

B
s ——rayT
p = avergge 08
sefflement 0 5 10 15 20
b/B

T T T 170 i | R AR R R A1

b ettt Attt /B2 "
R eepme N -4
"""""""""""" square -~~~
"""""""""""" ghrede
"""""""""""""" T T
100 {000

Average immediate settlement of a uniformly loaded finite thickness layer

Christian & Carrier (1978) Janbu, Bjerrum and Kjaernsli’s chart reinterpreted. Canadian Geotechnical Journal (15) 123-128.



Section 4: Bearing capacity of deep foundations

4.1 Axial capacity: APl (2000) design method for driven piles

Sand

Unit shaft resistance: 1, =o' tand=Ko',,tand <1y,
Closed-ended piles: K=1

Open-ended piles: K=0.8

Unit base resistance: g, =Ng 6'vo < Qb jimit

Soll Soil density Soiltype | Soil-pile Limiting Bearing Limiting
category friction value 155, Capacity value, Qpim
angle, 4 (°) (kPa)  factor, Nq (MPa)
1 | Veryloose - Sand 15 - -50 8 - 1.9
Loose Sand-silt
Medium Silt
2 Loose Sand 20 75 12 29
Medium Sand-silt
Dense Silt
3 Medium Sand 25 85 20 4.8
Dense Sand-silt
4 Dense Sand 30 100 40 9.6
Very dense  Sand-silt
5 Dense Gravel 35 115 50 12
Very dense Sand

API (2000) recornmendations for driven pile capacity in sand

Clay

American Petroleum Institute (API) (2000) guidelines for driven piles in clay.

, 0.5 , 0.25
Unit shaft resistance: a="2-05. Max[(ﬁj , (&J ]
s Sy s,

u

it is assumed that equal shaft resistance acts inside and outside open-ended piles.

Unit base resistance: db = N¢ Su Ne=9.

10



4.2 Axial capacity: base resistance in sand using Bolton’s stress dilatancy

Unit base resistance, q, is expressed as a function of relative density, Ip, constant
volume (critical state) friction angle, ¢, and in situ vertical effective stress, o'.

ap (MN/m?) ap (MN/m?)
1 3 5 710 20 1 2 3 5 710 2030
10

0.75 10 [
\ )
20 \ N 20 NK \A

_ - 79N
30 N \ lo=1 30 \ N \;Dzj
LI AN
50 TN 50 EANEL
70 \\\ S L\\ \\ 70 < \\ AN
AN
a{/100 AY \ i 100 - AN \\\N N
(kN/m?2) | r\\V N\. \\\ \\
200 ' LN 200 N
RN IMANN
300 \1:\\ \\L 300 N
NN NN
500 AN\ | 500 ‘
(@) ¢, = 27° (b) ¢y = 30°
ap (MN/m?2)
1 2 3 5 7 10 20 30 50
10
0>\ w
@.75
20 N \ N \
NS ANEANR N
0.2, N! N\
50 AN =1
\\ N \\
70 anm X
o’ 100 N \; AY
(kN}jml) \\\\ \
N
200 NN \\
300 \\ \\
NAL
500 ANAY

()¢, = 33°

Design charts for base resistance in sand
(Randolph 1985, Fleming et al 1992)

11



4.3

Lateral soil resistance (force per unit length), P, = nzD

Lateral capacity: linearly increasing lateral resistance with depth

In sand, n = y'K,?
In normally consolidated clay with strength gradient k; s, = kz; n=9k

Hut  ultimate horizontal load on pile
M, plastic moment capacity of pile
D pile diameter
L pile length
e load level above pile head
(=M/H for H-M pile head loading)
Y effective unit weight
Ko  passive earth pressure coefficient,
Ko= (1+ sin ¢)/(1- sin ¢)
100 T T T LSRN NN J A 2 1
3 Restramed My/nD* /
] (one hinge) 200 -
10 0 e
E Restrained
P (no hmge) 5’
H,/nD?® [
5 e |
1 e/D
Y ]
2 ]
4 1
0.1 8.LA
1 2 4 6 810 20

L/D

Short pile failure mechanism

Lateral pile capacity

H,/nD?

Sand: n=vK;?
NC clay: n= 9k,,, 5,5k,.Z

Sand or normally-
consolidated clay

100

10

T T /
Restrained

(two hmge)ﬁ’

10 100 1000
M,/nD*

Long pile failure mechanism

(linearly increasing lateral resistance with depth)



4.4

Lateral capacity: uniform clay

Lateral soil resistance (force per unit length), Py, increases from 2s,D at surface to

9s,D at 3D depth then remains constant.

Hut  ultimate horizontal load on pile
M, plastic moment capacity of pile
D pile diameter
L pile length
e load level above pile head
(=M/H for H-M pile head loading)
Sy undrained shear strength
100
F Restrained
:(nemge)\
10F
Hu/s,0? ¥~
1 o
!I Restrained
16 /D (no hinge)

I 1 [ SN TS W N W T

1 2 4 6 810
LD

Short pile failure mechanism

100

Hyfs,D?

10

Uniform clay

| T
Restrained
(two hinge)
7

10 100 1000
M,/s,D?

Long pile failure mechanism

Lateral pile capacity
(uniform clay lateral resistance profile)

13



Section 5: Settlement of deep foundations

5.1 Settlement of a rigid pile

V., Wigad
Stiffness, G

Shaft response:

TV

Equilibrium:

R

=1
s
r

Compatibility:

LI
dr

r .
R & W L%—
) “ar

Y

Elasticity:

I_¢

Y
Integrate to magical ¥
radius, rm, for shaft
stiffness, t/w.

Nomenclature for settlement analysis of single piles

Combined response of base (rigid punch) and shaft:

vV = Qb +& \ = 4RbaseGbase + ZnLGaVQ
W head W pase w Whead 1-v C
\4 _ 2 Gbase Dbase +EG8V9 __L:_ \ . 2 ﬂ_'_&t_pk
These expressions are simplified using dimensionless variables:
Base enlargement ratio, eta M= Rpase/R = Dpase/D  Slenderness ratio L/D
Stiffness gradient ratio, rho  p= G,y /G Base stiffness ratio, xi = G./Gpase

It is often assumed that the dimensionless zone of influence, {=In(r/R) = 4.

More precise relationships, checked against numerical analysis are:

€= In{{O.S +(5p(1 —v)—0.5)§}|€)—} for £=1; ¢ = ln{5p(1 —v)%}

5.2  Settlement of a compressible pile

2n 2n tanhpl L
+p— — 8
V. _(-wg "¢ s D 8, N
) here p=-“== " Pile compressibi
WheadDGL 1+ i 87] tanh uL _L_ where p D ile compressibility

mA(1-v), pb D
A= Ep/GL Pile-soil stiffness ratio
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