ENGINEERING TRIPOS PART IIB

Wednesday 25 April 2007 2.30to 4

Module 4F1
CONTROL SYSTEM DESIGN

Answer not more than two questions.
All questions carry the same number of marks.

The approximate percentage of marks allocated to each part of a question is

indicated in the right margin.

Attachment: Formulae sheet (3 pages).

STATIONERY REQUIREMENTS SPECIAL REQUIREMENTS
Single-sided script paper Engineering Data Book
CUED approved calculator allowed
Supplementary pages: One extra copy of
Fig. 1 (Question 1) and two extra copies
of Fig. 3 (Question 3).

You may not start to read the questions

printed on the subsequent pages of this

question paper until instructed that you
may do so by the Invigilator




1 (a)

2

F(s) is a conformal mapping at a given point if it is analytic and has nonzero

derivative at the point. Conformal mappings preserve angles and their sense.

Applications of conformal mappings: (1) an understanding of the Nyquist stability

criterion in terms of anxious crossings, (2) calculation of breakaway points in root-locus

diagrams, (3) calculation of the sense of rotation of mappings of small semicircular arcs

in Nyquist diagrams, (4) calculation of approximate locations of closed-loop poles near

to the imaginary axis in Nyquist diagrams.

(b)

The actual plant used for this example was (s-+-1)3/((0.4s +1)s%).

() The Nyquist diagram (not to scale) for G(s) can be found on the right
of Figure 1. On the left is the Nyquist D-contour.

lm
Im

Fig. 1

Note that the small semi-circle gets mapped into an arc passing through
3 x 180°.

If —0o < —1/k < —5 (or 0 < k < 0.2) then there are 2 clockwise
encirclements which means the feedback system will have 2 RHP poles.

If =5 < —1/k <0 (or0.2 < k < o) then there are 0 encirclements which
means the feedback system is stable.

If 0 < —1/k < oo (or k < 0) then there is 1 clockwise encirclement which
means the feedback system will have 1 RHP pole.

(ii) The actual closed-loop dominant poles are: 0.04 + j0.62 (k = 1/7),
0.00 £ j0.71 (k =1/5), 0.10 & jO.85 (k = 1/3). The estimated location of
the closed-loop poles near the imaginary axis can be found attached.

(iii) A circle centred at -1 and of radius 1 does not intersect, but just touches,
G(jm). Hence the minimum value of |1 + G(jw)| over all frequencies equals
1. Hence the maximum value of |S(j®)| over all frequencies equals 1.

(cont.
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4

2  (a) Briefly describe reasons for the use of feedback control in engineering
systems. What are the disadvantages of feedback? [25%]

(b) Suppose F(s) is a rational transfer-function which is stable and fixed. Let
/(@) be a positive, continuous function. The feedback configuration of Fig. 2 is said to
be robustly stable if it is stable for all stable A(s) satisfying | A(jw)| < f(w) (for all w).
The Small Gain Theorem states that Fig. 2 is robustly stable if and only if:

[F(jo)| < for all w. )

1
fw)
(i) Show that (1) is a sufficient condition for robust stability. [15%]
(i) Let F(s) =1/(2s+1) and f(w) = v ®2+ 1. Find a A(s) satisfying
|A(jw)| < f(®) (for all @) for which the feedback conﬁguratwn of Fig. 2 is
unstable. [20%]

() Let Gi(s) = G(s) + A(s) where G(s) is fixed and known and A(s) is known
only to be stable and satisfy |A(jw)| < h(w) (for all @) for some positive continuous
function h{w).

(i) Find a necessary and sufficient condition for a controller K(s) to
stabilise all such G (s). [20%]
(i) Let
1 e-—ST
Gy(s) = -
1(s) s + s+a

where it is known only that 7 > 0 and a > 0. Suppose the controller K(s) = 1
is chosen in the standard unity negative feedback arrangement. For what

values of T and a can closed loop stability be guaranteed? [20%]

(cont.
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3 Fig. 3 is the Bode diagram of a system G(s) for which a feedback compensator K(s)
is to be designed. It may be assumed that G(s) is a real-rational transfer function, and that
all poles and zeros have moduli which lie within the range of frequencies shown on the

diagram.

(@) () Sketch on a copy of Fig. 3 the expected phase of G(jw) if G(s) were
stable and minimum phase.

(ii) Determine whether G(s) has any right half plane poles or zeros (it
doesn’t have both), and estimate their location (if there are any).

(iii) Comment on any limitations that this might impose on the achievable

crossover frequency.

(b) A feedback compensator K(s) is to be designed to simultaneously satisfy the
following specifications:

A: internal stability of the closed-loop,
B: a steady-state error of 0.1 for a unit ramp reference input,
C:|G(jo)K(jw)| =1 at @ = 4 rad/sec,
D: a phase margin of at least 40°.
(i) Explain why these specifications cannot be met if K(s) has just one
pole and one zero. [Hint: you may find it helpful to break the argument

down into two cases where K(s) is a lag compensator or a lead compensator,
respectively.]

(i) Find a controller consisting of a lead compensator and a lag
compensator together to achieve the desired specifications. [Hint: you may
find it helpful to design the lead compensator first to slightly exceed the
required phase margin.] Show on another copy of Fig. 3 the effect of this
compensator on the return-ratio transfer function.

Two copies of Fig. 3 are provided on separate sheets. These should be handed in with

your answers.

(cont.
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Extra copy of Fig. 1: Frequency response of G(s) for Question 1.
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Formulae sheet for Module 4F1: Control System Design

To be available during the examination.

1 Terms

For the standard feedback system: shown below, the Return-Ratio Transfer
Function L(s) is given by
L(s) = G(5)K(s),

the Sensitivity Function S(s) is given by

56 = T EeEe
and the Complementary Sensitivity Function T (s) is given by
w(s)
0 G(s) — £ y(s)
| K(s) O v(s)

The closed-loop system is called Internally Stable if each of the four closed-loop
transfer functions
1 GEYK(s) K(s) G(s)
14+ GEK(EG) 1+G(GIK() 14+GE)K() 14+ G()K(s)
are stable (which is equivalent to S(s) being stable and there being no right half
plane pole/zero cancellations between G(s) and K (s)).

A transfer function is called real-rational if it can be written as the ratio of two
polynomials in 5, the coefficients of each of which are purely real.

2 Phase-lead compensators

The phase-lead compensator

s+ we /e

K@) = ,
) =e s + wer

> 1

achijeves its maximum phase advance at @ = w,, and satisfies:

|IK(jwe)| =1, and [K(jo,) = 2arctanea — 90°.

1
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4 The Poisson Integral

If H(s) is a real-rational function of s which has no poles or zeros in Re(s) > 0,
then if 59 = ag + jwp with g > 0

o0

1 oo
log H(sg) = — log H{jw)dw
4 7)o Bt @) gH(j
and -
1 coshvcosf
log |H(sp)| = — log |H{j|sole’}| d
og |H (so)} = — = ey g |H(jlsole®)| dv

where v = log (Ts"ﬁ) and 8 = /(59)- Note that, if s is real, so Zsp = 0, then

coshvcos@ _ 1
sinh? v +cos2@  coshv’
We defi
© ne Po(v) = coshvcosé
e sinh? v + cos2 6
and give graphs of Py below.
3 T ’ —
=2
=
=
3
Y1)
=l
=1

The indefinite integral is given by

f Ps(v) dv = arctan (smhv)
cosf
1 [s 0]

= Py(v)dv=1 forall6.

0

G. Vinnicombe
M.C. Smith
November 2002



