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1 (a) Explain what is meant by an invariant set in the context of nonlinear
dynamical systems, and name two kinds of invariant set that can occur. [20%]

(b) State the circle criterion for the stability of feedback systems in the form of

Fig. 1, in which the nonlinear gain y satisfies
oa<yle)<B foralle ¢))

assuming that o > 0. [20%]

(c) Figure 2 shows a feedback system, in which k is a constant gain, and H(s) is
the transfer function of a linear system. Show that, for the purposes of stability analysis,

this system can be put into the form shown in Fig. 1, with [20%]
k+H
G(s) = + . (s)

(d) With reference to Figs. 1 and 2, inequality (1), and still assuming that o > 0,
suppose that for a given value & of k, the system satisfies the circle criterion, and

Im{G(jw)} <0 for >0.

Show that the system also satisfies the circle criterion for any larger gain, that is for any
k> kp. [30%]

Show that the transfer function H(s) itself is stable. [10%]
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4

2 (a) State LaSalle’s Theorem and explain why it is often more useful than
Lyapunov’s Theorems for establishing asymptotic stability. [20%]

(b) The yaw angle y of an underwater vehicle responds to an applied torque u
according to the differential equation

Vraylyl=u  (a>0)
Express this equation in state-space form. [10%]
(c) Referring to part (b), if proportional feedback is applied:
u=—ky
show, by considering the function

V (v, ¥) = ky? + y?,

that the closed-loop system has an asymptotically stable equilibrium at (y = 0,y = 0) if
k> 0. [30%]

(d) Referring again to part (b), suppose now that feedback is proportional with

saturation:
+1 if ky < -1
u=-—satlky) =< —ky if —-1<ky<l
-1 if ky>+1

Sketch the form of the state trajectories in the state space, and hence deduce that the
closed-loop system is globally asymptotically stable if £ > 0. [40%]



3 Consider the following nonlinear discrete-time system
x(k+1) = flx(k),u(k)], with 0 = £[0,0]
and the one-step cost function
V(x,u0) := £(xp,u0) + F (x1)
where ¢(-,-) and F(-) are given nonlinear functions, xy = x is the current, measured value

of the system state, and x| := fl[xg, ug).

(a) For a given x, let uj(x) denote the control input that minimises V (x,ug), and
let V*(x) := V(x,u(x)) be the minimum value. Show that [30%]

V(flx,uj(x)],0) =V*(x)—¢ (x, u(’g(x)) ~F (f[x, ué(x)])
+€(f[x,u8(x)],0) +F (f[f[x,ug(x)],O]) .

(b)  Suppose that the function F(-) is known to satisfy
F(f[x,O]) _F(x) +£(X,O) <0

for all x. Using the result of part (a), show that [25%]
V¥ (fTnug(x)]) = V* () < —L(%,ub(x)).

(c) State any additional conditions required on the functions V*(-) and £(-,-) in
order to ensure that V*(-) is a Lyapunov function for the closed loop system [25%]

x(k+1) = fx(k), ug(x(k))].

(d) Suppose that the function F(-) satisfies F(0) =0 and F (x) >0if x#0.
Recalling the assumptions of part (b) and any additional conditions on the function £(-,-)
you suggested in (c), what can be inferred about the stability of the uncontrolled system  [20%]

x(k+1) = flx(k),0]?
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4 Consider the following linear discrete-time system
x(k+1) = Ax(k) + Bu(k)
where x(k) is the state and u(k) is the input. Let x; and u; be the predicted state and input,

respectively, at time k +s, i.e. xy = x(k) and x,, | = Axs+ Bug for s =0, 1,.... Suppose
that the predicted input u; is modelled as a linear function of the predicted state xg:

Usg — sz + vs
for some matrix K. Define
X = le , V.= [VO} .
X2 V1
(a) Find matrices ® and I such that [30%]
X =Px(k)+TV.

(b) Suppose that the following constraints are given:
Cus<efors=0,1; Dxy < f.

Compute matrices E, F and G and a vector g such that these constraints can be written as  [20%]
Ex(k)+FX+GV <g

(c) Using the results of (a) and (b), find matrices S and T and a vector 4, in terms
of ®, T, E, F, G and g, such that the constraints in (b) can be rewritten as [20%]

SV < h+Tx(k)

(d) Suppose that the following finite-horizon cost function is specified:
J(x(k), V) =XT0x +|cTv|

for a given positive definite matrix Q and a vector c. Show that the problem of finding a

vector V that minimizes this cost function subject to the constraints in (c) can be written

as a quadratic programming problem. [30%]
Hint: Introduce an additional variable to eliminate the absolute value component of

J(x(k),V).
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o | A+BK o B 0
= | (A+BK)? |’ = | (A+BK)B B
(b)
CK 0 O c o0 e
E=| 0 |, F=|cKk o, a=]0 Cc|, g=|¢]|.
0 0 D 0 0 ¥

Note: The solution to this part is not unique, but the idea is to translate the constraints into the
given form as simply as possible.

(c)
S=FT"+G, T=—(E+F®), h=yg

(d) —






