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Module 4F6
SIGNAL DETECTION AND ESTIMATION

Answer not more than three questions.
All questions carry the same number of marks.
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indicated in the right margin.
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1 Define Fisher Information, the Cramer Rao Lower Bound and Entropy. [20%]
Outline a proof of the Cramer Rao Lower Bound inequality. [20%]
Using Maximum Entropy arguments, derive probability distributions for the cases:

a) Nothing is known about the distribution other than it is normalized. [20%]
b) In addition to the normalization constraint, the mean is known. [20%]

c¢) In addition to the normalization constraint, the mean and the variance are known,

[20%]
2 Define the term Conjugate Prior and explain why it is a useful concept in Bayesian
inference. [20%]
In traffic monitoring it is important to know the density of traffic travelling over a
section of road each hour. Let n denote the number of cars counted in a one-hour period
and assume that » is Poisson distributed with intensity A:
A’n
p(rlA) = exp(~2)"
We are interested in estimating the intensity A given the observed counts x.
a) Show that the gamma prior is conjugate to the Poisson likelihood. [40%]
b) Find the optimal Bayesian MSE estimator for 4. [20%]
c) Describe what happens in the limit as ¢, 8 — 0. [20%]

The gamma density is given by

p(A) = %z“*lexp(—m)

where o and f are free parameters that characterize the shape and location of the gamma
density and I'(¢) = (o — 1)! is the Buler gamma function.
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3 Suppose that we have two competing models for a scale observable:

Ho ' po = %em(-—«/ilxl)

1 1,
Hy:py = ——exp(—=
1-P1 \/2—71: p( 2x )
a) Show that the two models have the same mean and variance. [30%]

b) Write down the likelihood ratio and determine the decision regions for various
values of the threshold in the likelihood ratio test. (There are three fundamentally different
cases.) [70%]

4  We want to decide if a coin is fair by tossing it eight times and observing the number
of heads. Assume that we have to decide in favour of one of the following two hypotheses:

Hy : Fair coin, P(head) = pg = %
H;j : Unfair coin, P(head) = p;=04

a) Derive the MAP decision rule assuming P(Hp) = 5 . {50%]
b) Calculate the average probability of error. [50%]
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