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1 (a) Without detailed calculations explain briefly, from first principles, how the
method of calculus of variations can be used to find the differential equation and
boundary conditions satisfied by a function y(x) which minimises the integral

b
f F(y,y',x)dx
a

where F is any given function. [20%)]

(b) An elastic beam of length L, mass per unit length m and bending stiffness EI
is pinned at both ends, and restrained against rotation at both ends by identical torsional
springs of stiffness K as shown in Fig. 1. The beam can undergo transverse bending
vibration, with displacement y(x,#). The potential and kinetic energies associated with

this bending motion are

2

EI & o"2y 2 m’k dy
V =—||—5| dx and T =—f|—| dx
beam ) {(8)62 beam ) {((%)

respectively. The potential energy stored in a torsion spring of stiffness K when rotated

through angle 8 is %KBZ .

K S K
~»
=0 x=L

Fig. 1

For a vibration mode, y(x,t)= u(x)eiw”t where ®,, is the natural frequency. Use

Rayleigh’s principle and the method of calculus of variations to show that

4
EI d—Z = ma),zlu
Find the boundary conditions to be satisfied at x =0, L. [40%]
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3

(¢) For the case K =0, show that the function

U= sin(—’?) where n=1,2,3,...

satisfies the equation and the boundary conditions, and deduce the corresponding natural
frequency w,,. [15%]

(d) For the case when K is non-zero but very small, use Rayleigh’s principle to
obtain an approximate value for the modified natural frequency. [25%]
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2 (a) Use suffix notation to calculate (i) V(1/r) and (ii) Vz(l/r)

where 7 =|x| and x is the position vector. [35%]

(b) Evaluate the integral
I=[[[v*/r)av
Vv

(i) over a volume V' not including the origin x = 0;

(i) by first transforming to a surface integral, over a volume ¥ which is a
sphere of radius a centred on the origin;

(iii) over any volume V which includes the origin. [35%]

(¢) Comment on the results of (b). To what well-known one-dimensional result
does this behaviour correspond? What is the relevance of this result to the solution of
Poisson’s equation in infinite space? [30%)]
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3 (a) Explain what is meant by a well-posed problem in the context of second
order partial differential equations. [15%]

(b) Show, carefully, that the following problems are not well-posed and, for
each case, indicate a change to the problem which would make it well-posed.

(i) The function ¢(x, y) satisfies

8% 8%¢ +232¢ o
axZ  oxdy g2

0=sx=<1,0=y=l

subject to the boundary conditions

260) = 2261 = 220) - 220.5) - 0 [15%]
y ay ox ox

(ii) The function ¢(x, y) satisfies

V2¢=O O0=x=sl,0=sy=<l
subject to the boundary conditions

99 - 99 _ 99 =99 -
P (x,0) =1, P (0,y) P (Ly) P (x1)=0

and to the auxiliary condition 4)(0,0) = 0. [30%]

(iii) The function H(x,t) satisfies

2
a—q=ocﬂ O<sx=<L,0st=T
ot axz

subject to the boundary conditions
00,0) = 6(L,) = 0 and 6(x,T) = sin%,

where « is a positive constant. [40%]
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4 (a) Explain briefly what is meant by hyperbolic partial differential equations

and the role that characteristic variables play in their solution.

(b) The function u(x,y) satisfies the partial differential equation

’u 1 d%u 1 0’u 1 ou
2 “saaazts s =0 (D
ox® 2y dxdy 2y dy- 2y dy

for x> 0and all y, subject to the boundary conditions

0
u(O,y)=O and %(O,y)= y2.

Show that the partial differential equation (1) is of hyperbolic type for y = 0.

(c) Show that characteristic variables (§,17) for equation (1) satisfy

x=E+n and y2=§—2n

and find the general solution of equation (1) in these variables.

[20%]

[15%]

[25%]

(@) By solving in characteristic variables equation (1) plus its boundary

conditions, show that

2

) = %

END OF PAPER
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Answers

2_2
4Kn“m
1 (d) @k, ~oi+
new old I
2 (a)(1) —|i3; (i) O (exceptatx=0)
X

(b)G) 0; (i) —4u; (i) -4m



