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Q4(a)

Types of treatment
Hold up and decay
lon exchange
Chemical
Evaporation
Encapsulation
Vitrification
Transmutation

Hold up and Decay

e Makes use of the basic laws of physics
Useful for short half-life isotopes
Relatively cheap

Does not produce secondary wastes
Can be problems with some daughters

The wastes arise continuously, and are collected in a tank. When that tank is full, it is
valved off and the wastes diverted to a second tank. The wastes are then held in the first
tank for a further period to decay before being discharged or sent for further treatment.

This is a very effective method of dealing with short half-life isotopes in terms of operator
dose. It requires very little in the way of maintainable equipment and the tanks can easily
be shielded. Some additional treatment, e.g. ion exchange, may be needed to ensure that
discharges to the environment do not pose a risk to the general public.

lon Exchange

Useful for longer half-life nuclides

No effect on gaseous wastes

Active ions are exchanged for non-active ions

The spent ion exchange media are not regenerated

Media may be inorganic or organic

Inorganic media are easily encapsulated for long-term storage
Organic media may be chemically treated

The wastes are passed through a bed of ion exchange media which exchanges the
radioactive ions with non-active ions, e.g. cobalt is replaced by sodium. It is basically the
same concept as used in domestic water softeners, the only difference being that the
media, once saturated with active ions, are treated as a waste rather than being
regenerated.

As with hold up/decay the equipment is relatively simple and easy to shield, so direct
operator dose uptake is generally low. The problems arise with the handling and treatment
of the spent media which have to be stored and then encapsulated. Because it can give

reasonably high decontamination factors for isotopes such as strontium and caesium
which are readily absorbed by the body, it significantly reduces dose uptake to the general

public.

Chemical Treatment
¢ Neutralisation of acidic or alkaline wastes
+ Co-precipitation of some active species
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e Solvent extraction of active species
e Used largely for fuel production and reprocessing wastes

The equipment involved is fairly conventional chemical engineering, e.g. mixing tanks and
filters, which, though shielded, require some maintenance. Thus the operator dose uptake
is higher than for the previous methods, but, because the processes, particularly co-
precipitation, remove long half-life active species, they have significant beneficial effects

on public dose uptake.

Evaporation

e Gives very high decontamination factors

Very expensive in energy

Difficult to maintain

Can give high operator dose rates

Generally used only as a last resort

Evaporators are very complex pieces of equipment and, though those used in the nuclear
industry are of a simpler and hence less thermally efficient design, they still require a
significant amount of maintenance and hence operator dose. The decontamination factor
is very high so the resulting dose to the general public is very low. This is a very clear case
of trade-off between operator and public dose uptake.

Encapsulation

Used for solid wastes and sludge

Cement

Bitumen

Polymer

Problems with organic wastes

Only cement is now in common use

The equipment required is very complex with a significant number of mechanical
components including mixers, conveyors, mechanical handling etc. requiring maintenance.
Hence the operator dose can be relatively high. Because it effectively isolates the wastes
from the environment, it has significant beneficial effects on public dose.

Vitrification

e Used only for highly active long half-life wastes

e Expensive but ensures wastes are suitable for very long-term storage

e Commercial processes use glass but more complex processes (Synroc) use other
minerals

Whilst the technology used is very different this is really just another form of encapsulation
and the operator and general public dose implications are similar.

Transmutation
e Very much in experimental stage, largely in France

¢ Aimed at reprocessing wastes
e Uses fast reactor to transmute long half-life actinides to much shorter half-life isotopes
This technology is not yet sufficiently developed to comment on dose implications,
although, if it is successful in dealing with very long half-life isotopes without significant
operator dose, it will be advantageous.

[70%]
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(b) Calculation
Decay constant A is given by:
In(2)/t,,= 0.693/(252 x 24) = 1.146 E-4 hr"

Atoms of Ag-110m arising is given by:

o 3600x10% A,0p
A
_3600x10° %22.4x0.0625 x 1000
1.146 %1074

= 4,398 E13 atoms per hour
[Conversion factors: 3600 = number of seconds per hour, 10° = number of g per kg]

[Density p is not specified in the question. Its value is not actually needed as it cancels later in the
calculation. Most candidates assumed a value, as here.]

Hold up and decay (filling and decay hold-up periods are both 10 days = 240 hours)

(L— Ty

N=P
A

—(1.146x10'4x240)) e—(].146x10"4 X240)

1—-
= 4398 x 108 4 =¢ ~
1.146x 10

=1.013 E16 atoms
Volume of effluent V = Q0T =0.0625 X240 =15 m?

Activity of effluent

NA
As——————
3600x10°Vp
_ 1.013x10"°x1.146x 10~
3600x10° x15x1000

=21.5 qu—1

Hold up and decay has relatively little benefit here as t,, is an order of magnitude larger than the
periods of filling and decay hold-up.

After ion exchange with a DF of 10, the final effluent activity will thus be 2.15 Bq g'l.
[30%]



