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1.  (a)
, \ r+3) [
= 4
Assume molecules make their last collision one mean free 4
path above or below the plane y = 0.
_ 10)
Flux of KE from below = 25 ¢ | 70y = 1%L y=0
4 dy
ol I(-4)
Flux of KE from above = _p£0v 7(0) + P y=-4
4 dy
Net flux of KE in positive y-direction = heat flux = ¢ = —'DC%"—C;—T
Ly
Thermal conductivity £ is defined by ¢g = —kC;—T and hence, k= BC—;—E"— .
'y

Thus g =1.

More detailed solutions of the Boltzmann equation give £ = 5/2. This is because
molecules with higher velocity (and therefore higher KE) tend to come from further away

and this correlation is not accounted for in the simpler mean-free-path theories.

(b) Eucken suggested that the effect of the high velocity molecules leading to # = 5/2
should only be applied to the contribution from the translational KE and that the contribution
from the rotational and vibrational energies should be treated as in the simple theories. The
contribution of the translational KE to ¢, is equal to 3R/2 by the equipartition principle (there
are 3 translational degrees of freedom and each contributes R7/2 per unit mass to the total
energy). This leaves (¢, — 3R/2) to represent the rotaional and vibrational contributions to the

specific heat. Hence, the Eucken expression for the thermal conductivity of a diatomic or

polyatomic gas is,

pCA | 3R 3R . 5
k= — + -— with = —,
2 ['B 2 T\ F=5

[35 %]

[5 %]

[20 %]
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For the free-molecule region :

KE flux carried to the wall by incident molecules = c, D,
KE flux carried from the wall by reflected molecules = £4£ c, Ty

Hence, net KE flux in the positive y-direction = ﬁ4£ c, T, = T)
For the continuum region :
: . o dT
Net KE flux in the positive y-direction = ¢, = -k ’
'y
Matching the fluxes gives :
PC (1, —-T) = k9L - _pCAedT
4 dy 2 ay

where the final expression comes from the result of part (a) with g=1.

Substituting 75, = T, + lad,—T gives the required expression for the temperature jump :

T -1,) = 2L [40 %)
dy

Note : If f = 5/2 is used when substituting for &£ then the free-molecule fluxes probably
ought to be modified similarly (although the theory doesn’t really stand up to this level of

detailed analysis).



2. (a) The mean molecular speed is given by,

— % < 4nC? c?
C = [Cg,(O)dC = [—Z% __ exp| - ——— | dC
OJ ¢ (')[(27rRT)3/2 p( 2RT]

the integral is transformed to,

: C dC
Defining x = and hence dx =
N2RT N2RT

C = 7 (2RT) (3 /IiT) Jx3 exp(—x?) dx
(27 RT) ;

Using the given integral, Jx3 exp(—xz)dx = %, we obtain,
0

1/2
. (8RT
C = (TJ [25 %]

The molar mass of N is 28 kg/kmol so Ry, = 8314.3/28 =298 J/kg K. Hence,

172
Cny = (WJ = 477 m/s [5 %)
r

(b) (1) D=0.1 pm. The Knudsen number is defined by Kn = A/D where A is the mean
free path. A can be estimated using the approximate formula z = pCA / 2. Hence,

2 2uRT  2x18.3x107°x298x300

A= = = = = 1.38x10°m = 1.38um
Kn = —g— = Q? = 13.8 >>1  (Free molecule regime) [10 %]

Leakage in the free molecule regime is by effusion. If the total flow area is 4 :

Molecular mass flowrate from AtoB = paC A _p ACA4
4 ART

Molecular mass flowrate fromBto A = peC 4 =P BC 4
4 4RT

(Pa-pp)CA _ (5000-4800)x477x1.0x107°
4RT 4% 298x 300

Net mass flowrate Ato B =

= 0.267x10°kg/s = 0.96 g/hr [25 %]



(1) D =50 pum. The mean free path 4 =1.38 um as before

Kn = g— = % = 0.028 <<1 (Continuum regime) [5 %)

Leakage in the continuum regime is calculated using conventional fluid mechanics
(estimation of the mass flowrate through an orifice). Assuming inviscid flow (actually a poor
assumption because the Reynolds number is very low) the velocity ¥ at the hole is obtained
by applying Bernoulli’s equation from the stagnation pressure pa to the plane of the hole
where the static pressure will approximately pg. The density can be assumed constant at p,

because the pressure drop is small and the flow essentially incompressible. Thus,

1
PA = pp + E,DAVZ

1/2 1/2
s _ | 2(Pa-pp) _[2rT(pa-pp)]"" 2><298><300><(5000—4800)}”2
Pa Pa 5000
= 84.6m/s (Mach number = 0.24 so incompressible assumption is OK)

paVA _ 5000x84.6x1.0x107°
RT 298x 300

Leakage mass flowrate pAVA =

47310 kg/s = 17.0 g/hr [20 %]

I

(iii) A graph of leakage mass flowrate versus logio(Kn) will look something like this :
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(a) e - total energy of the particle
€& - potential energy of the particle

vy the wave function, defined such that |y|* dV is the probability of

finding the particle within the elemental volume dV.

(b) e=Ltm@’ +ul+ul) g, =0
) 4n’m?
V\y+h—(u +ul +ul)y =0
d’y, d’y, Ay,
\%W3dﬁ +%W3dﬁ %Wzdﬁ hzua+pz+mr%wma—0

1 d’y, 1fw“_1d% 47’
v 5w, de o, dn

(A+m+m)0

Each of the first three terms is a function only of x; , x; and x3 respectively and must
therefore be constant. It is also evident that y; must depend only on the momentum in
the x; direction etc. It therefore holds that

1 dzw] 4n’ p!

— =0
v, A2 W

and similarly for directions x; and x3 .

The solution is:
2 .
v, :Asin(@%x,j+Bcos[%x,J with y1(0)=wyi(a) =0.

2n|p|a

The b/c’s give B = 0 and =nmn , where n is a positive integer. The

momentum is thus quantized, such that |p;| = n; (h / 2a) and n; is the number of half

DeBroglie wavelengths that fit inside the box in the x; direction.

The kinetic energy is thus given by:

2 2 2 2
+p, + h
g=P TP TP 2(nlz+nzz+n32)
2m 8ma




(¢) The number of energy states with energy less than or equal to € is given by the
volume of the octant of a sphere in n-space.

. 4 .
i, T(e)=—dmn’/3= 7‘5/(2mg)3’2 with 6= kT
8 3h 2
4y 4xmx107 4
I'(e)= 3mkTY'? = 3x kx500)"% ~2.3x10%*
(&) =35 GmAT) i O GoaanioR X300 ~2:3x10
The number of molecules is given by:
pV = NkT
S -3
LA T

kT 1.38x1072.500

Comment: there are about a million times as many energy states as particles, so most
energy states are unoccupied.

(a) Let Y be the sum of scores on the yellow dice, P be the sum on pink dice.

Y Y. Y,Y; No.of Y P PP, No. of P Total
permutations permutations | permutations
18 6,6,6 1 9 6,3 2 4
5,4 2
17 6,6,5 3 10 6,4 2 9
5,5 1
16 6,5,5 3 11 6,5 2 12
6,60,4 3
15 6,6,3 3 12 6,6 1 10
6,5,4 6
5,5,5 1

Total number of outcomes = 4+9+12+10 = 35

Relative frequencies for P =9, 10, 11, 12 are 4/35, 9/35, 12/35 and 2/7 respectively.

Analogy with the canonical ensemble: P represents energy of system, Y represents
energy of reservoir. Total energy, P + 7, is constant. As with the canonical ensemble,
each “microstate” of the composite system (i.e., system plus reservoir) is equally
probable, but probability of microstates of the system alone depends on the system
energy.
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QT =T)  P(T)
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(i) AS,, =S(T)-S(T)=kln

P(T)
) =exp{AS,, /k} =exp{-mc, AT* | 2kT?}

To

Relative probability, P(T)/P(To)

|

0 J 1

Temperature, T

From the form of P(T), the standard deviation (RMS) of temperature fluctuations is:

RMS =T, \Jk/mc, =500><\/1.38><10"23 /(10°.10°) =1.86x10”° K



