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{(a)  The need for Quantum Mechanics arose around the turn of the 20" century,
sputred on by a number of experimental irregularities. For instance, on the basts of the
understanding of nature at the time, the very existence of atoms was puzzling. It wes known
that atoms consisted of negatively charged electrons “orbiting” positively charged nuclel,
From conventional electromagnetism, we know that any accelerating charged particie will
emit electromagnetic radiation, and hence lose energy. Therefore, if an electron arbits &
nucleus, by the very fact that it is moving around the nucleus, it must be undergoing
acceleration. QOue would expeet then, that it would radiate, lose energy and spiral into the
nueleus. This clearly dossn't happen, s0 a theory was needed Lo explain why not,

Another problem was the phenomenon of photoernission. This is the effect
whereby eleciromagnetic radiation incident on » metal surface causes electrons to be ejected
from it. It was observed that electrons are only sjected once the frequency of the light
reaches some threshold value, their energy scales linearly with increasing frequency, and the
number of electrons ¢jocted incroases #s the intensity of light increases. This i5 at odds with
classical electromagnetism which predicts that (i) the frequency should not make any
difference whatsoever and (ii) the energy of the gjected electrons should only depend on the
intensity of light {Encrgy per unit volums of light is %eB? , and Intensity s cncrzy por unit
area). There is no reason classically for the number of electrons ejected to depend on
intensily, The explanation for this effect within the framework of Quantum mechanies is that
Hght consists not anly of waves, but also of particles called photons, which contain distinet
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amounts of energy, depending linearly on the frequency. The proportionality constant is
Planck's constant; h, Electrons are bound to the metal by an snergy called the work function,
and until the frequency of light is high enough, individual phpmns don't have enough energy
to frec them. Above this throshiold frequency then, electrons are emitted, and the excess
energy is taken up as the electron’s kinetic energy. The number of elsctrons ejected then
scales as the number of photons, which depends on the intensity.

Another turning point was the observation of electron diffraction — clear
evidence that particles have a wave-like character.

Other sxperimental evidenoe was for instance the inability of Physios to explain
(1) why some materials are conductors and others insulators; (i) the origin of electrical
resistance; (iif) the observed dependence of specific heat on temperature and (iv) the origit of
discrate spectea from heatod matorials, ¢.g the sun,

(b) Wave-packets are used to represent particles, eg. Electrons.



To construct a wave-packet, add two sinewaves:

I = By {Cos(eot-kx) + Cog{wat-kyx)}

This can be re-wniten as  E = ZEgsin{wst — kex}oos{w.t - kx)
Where 0. = (0 1 02Y2 uod k, = (k + k)12

This represents a sincwave of frequency o, which hos it's amplitude modulaed at the
frequency ., to produce beats. This therefore exhibits localised areas of enhanced field
sirength which may be used to represent particles. These localised areas (which we call
wave-packets) propagate through space at the gronp velocity Sk = ¢ {the speer of light).
In the absence of dispersion, these wave-packets will propagale without changing shape, but
if there is dispersion, they will spresd out.

The phase velocity is w/k = w,/k; =c. The group velocity can in principle vary, but
up to a maximum limit of c. We could refine the wave-packet by summing together
an infinite number of sinewaves, with for eg a Gaussian spectral function. This will

increase the localisation.
{c) Construct o wave-packet as follows generally:
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whete f{k) is the spectral function, which is given here as being a gaussian of width §:
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Where we have used the relation thal o = ck.
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Therctore, we can write (1) 83

This is known as a Gaussian Integral, and the casiest way to solve is to change the variables

to be more manageable: let x-ct -» x’, k-ibi2a ->k’, where a = 1/28 and b = x-ct. This gives

us
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The integral is just equal to {x/a)
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The net result then is that £ = &, v{ge 2

For a matter wave-packet, the propagation is different due to the fact that unlike em
waves, matter waves of different k have a different momentum, p, and so travel at
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different speeds. This leads inevitably to spreading of the wave-packet over time,
known as dispersion.

(d) Heisenberg’s uncertainty principle states that AxAk > g To see where this

comes from, consider the following:

The spectral function has a width Ak = 8. By inspection, the solution for E{(x) has a
width Ax = 1/8. Therctore, AxAk =1, Given that momentum, p = hk, it follows that AxAp =
. This is just a lower bound on the uncertainty, hence the inequality in Heizsenberg's
uncertatuty principle. What this i suying is that we can never simultuncously know
absolutcly both the pusition and momentum of a particle, and the more accurately we know

one, the less we can know about the nther.
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2.

(a) Schrédinger’s equation can be written in the regions to the left and right of the step as
(-h*2md*/ox*) ¥i(x) = E¥i(x) Region I
(-h*2md%/dx* +V) ¥i(x) = E¥n(x) Region II

The solutions to these equations are:

i - 2m(E-V
lPI(X) = Ale‘klx + Ble"kl" Where kl = @

h

and lP]](X) = Azeikzx where k; = 2mE

Matching the wave-functions and their first derivatives at the boundary (x = 0) yields the
following relationships:

Al+Bi=A,;

ikjA) — ik;B; = ik, Ay

i.e. Bi/A; = (k1= k)/(k; + ky)

The reflection probability is | Bi/A;>. This represents the probability that a given particle will
be reflected from the potential step, so must lie between 0 & 1. R does nof represent the
fraction of a particle which will be reflected. If we pass a large number of electrons over this
potential step, then on average, a fraction R of them will be reflected, but any individual
electron will either be totally reflected or totally transmitted.

In this case, R = 0.146.

(b) Probability density is defined as ll,u(x, t]z. This is the probability of finding the
particle at position x, at time ¢.

Wave-function and Probability density:

v
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Schrodinger’s equation is now
(-h*2md*ox* + V) Pi(x) = E¥i(x) Region I
(-h*2mé%/0x%) ¥y(x) = E¥n(x) Region IT
(-h*2md*/ox* + V) Wi(x) = E¥m(x) Region ITI

The solutions to these equations are:

Pix) = Ae*+ Be ™ * where k, = \/27” (E - V)
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¥y(x) = A+ B,e X, where ky=

And lP]]](X) = ng,eik]x where k3 = k1

Matching the wave-functions and their first derivatives at the boundary (x = 0) yields the
following relationships:

A+B=A+B;

ikjA; — ik;B; = ik A, - ik, B,

matching at x =L gives:

Al + By el = A, et

koA, %" — ikyB, €™ = ikj Ay €%

combining these equations, we eventually obtain for R:

R=|By/A=

(£ - k)(1-)]
[(k2 v k) = (k- k) ez""zL]
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=0.357

Probability density:
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v

x=0 x=d X

If we say that the amplitude of the incident wave is 1, then the wave-function in the

barrier region is:

Assumptions: (i) only an exponentially decaying term in barrier, (ii) effective mass of
electron in each region is the same

To improve precision, would include full form of yy, and would determine
transmission probability for entire structure.

(d) For a wave-packet, there are a range of energies depending on the initial spatial
extent of the packet. A packet which is narrow will be made up of plane waves with a
wide range of momenta, and so with a wide range of plane wave energies, so the
transmission and reflection probabilities will be different for the packet than the single
plane wave.
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There is another way to achieve very similar behavior: if a conventional p-n junction
diode is doped heavily enough (~ 10% dopants m™), it is possible to cause the Fermi levels in
the n and p-type materials to be in the conduction and valence bands, respectively, as shown
in the Figure below. Also, the effect of very high doping levels is to make the depletion
region extremely thin, in the nm range, so appreciable tunnelling can occur.
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Fig. 2.37. Band diagram of tunnel diode.



In (a), i.e. under zero applied bias: there is no net current flow, as the electron current
from the conduction band of the n-type into the valence band of the p-type is balanced by the
electron current from the valence band of the p-type in to the conduction band of the n-type.
In Fig. (b), under reverse bias conditions, the bands on the p-type side are raised relative to
the n-type side, and electrons can flow from p to n, tunnelling across the depletion region.
The width of this region will increase as the voltage is increased, so little current will actually
flow. In Fig. (c), which is under a low forward bias, the electron-filled states in the n-type
conduction band overlap with the holes in the p-type valence band and a significant current
can tunnel across the depletion region, similar to Regime B in Fig. (b). In Fig. (d), as the
forward bias is increased, the degree of overlap between the n-type conduction band electrons
and the p-type valence band holes decreases, as more of them start to overlap with the band
gap within the p-type. This has the effect of reducing the current across the depletion region
as there are fewer states for the n-type electrons to tunnel into. In Fig, (e), similar to Regime
(c) in Fig. (b), the current drops to its minimum value, as there is no longer any overlap
between the conduction band electrons in the n-type and holes in the p-type: there are no
available states for the electrons to tunnel into. The only current which can flow at this point
is a small inelastic tunnel current and a small thermal diffusion current. In Fig. (f), when the
applied forward bias is large enough, the height of the potential barrier between the n and p-
type is low enough for a thermal diffusion current to flow over the barrier, and this becomes
the dominant means of current flow. Resonant tunnelling diodes initially gained a lot in
interest for their potential application in oscillator circuits, particularly ones operating at high
(Microwave) frequencies. The reason for this can be seen by considering the simplest
possible oscillator: an LC circuit (i.e. an inductor in parallel with a capacitor). Due to the
phase difference of 180 degrees between the voltage dropped across each of these, energy is
effectively continually transferred from one component to the other — the circuit is an
oscillator. Once the oscillations begin, if we remove the voltage driving source, the
oscillations would continue indefinitely in the absence of any resistance within the circuit.
However, all circuits have some resistance, so real oscillator circuits have a finite Q-factor.
In principle, if we could add a negative resistance into the circuit to counteract the stray
resistance of the components, we could greatly increase the circuit’s Q-factor. This is done
by adding a resonant tunnelling diode into the LC circuit, and ensuring that it is operating in
the middle of its NDR region. This is illustrated in the Figure below. In recent years, the
tunnel diode has been replaced by digital components which are more reliable and which have
significantly better performance.
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Fig. 2.38. Typical circuit utilising a tunnel diode. The voltage source V is used to set the diode operating in the
NDR region (between A and B in Fig. 2.33(b)), and to start the oscillation. It also provides the energy to sustain
the oscillation 3f the circuit. The oscillation frequency is

(Vsevie)
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Now add in another well:

v

Energy levels become bands.

If the wells are close enough, the tail of the wave-functions within each well can extend

appreciably into neighbouring wells. This gives rise to a coupling between the wells, and

generates new wave-functions which are combinations of the original ones. For two wells,

those combinations are the sum and difference between the original functions. Hence, there

will be two states instead of one. For N wells, each state will become N closely spaced states.

The closer the wells are to each other, the larger will be the splitting in energy. This is similar

to beats in the addition of waves: the closer the frequency, the more pronounced are the beats.

As the wells are brought closer, the coupling increases and so therefore does the splitting of

the energy levels.

(b) Assumptions in the nearly-free electron model:
The electrons do not interact with each other

The electrons have discrete energy values

The electron gas follows Fermi-Dirac statistics

v



The general solution of the Schrédinger equation with a periodic potential is

w(x) = e®u(x). This is a plane wave modulated by the function u(x), where u(x) is a periodic

function with the periodicity of the lattice, i.e. u(x) represents the influence of the crystal
potential. This is known as Bloch’s theorem, and u(x) as a Bloch function.

If we expand the potential as a Fourier series, we can now do the same for u(x), to obtain:

1an

u(x) = ZCne

where n=0, £1, £2,..... and G, =2nn/a
That gives for the total expansion of the wave function:

We now insert the Fourier expansions of both y(x) and u(x) into Schrodinger’s equation,
ilk+G_)x
w00 = ¥ Cpel G
n
(-h*2md*/dx?* + V) ¥(x) = E¥(x)

We end up with a set of simultaneous equations in the unknown C,. Note that the Vp are

known, as the form of the crystal potential is assumed initially. There are an infinite number
of terms, so to make the problem manageable, we artificially truncate the series and consider
only the leading-order terms given by n =0, £1. This is justified for weak potentials such as

those found in metals.

V(x) = Vo + Ve + V.1,

If we continue along the same lines, we can assume that the wave-function also only contains

leading-order terms, i.e.

\V(X) — [C() + C]eiGlx + C-leiG-lx]eikx
(-H*2md¥dx* + Vo + V1" + Ve’ )[Co+ €1 + €19 e™ =
E[C()+ C]eiG]x + C_]eiG-lx]eikx

If we just consider a region where C, and C.; dominate, we are left with the relationships

(noting that G, = -G etc.):

(- h3K2Co/2m + Vo Co + CoV1e % ¥ + Co V.1 - hi(k + G.)*C €°.* 2m +



VoC.1eC 1 + ViC. + V.1C.1e%%%) = ECy + EC1e% ¥
Collecting terms in ¢S X, we find that:
CoV.i =Rk + G.)*2m + E - V,]C.,
Terms without any exponent give:
C. V| = [(8’k*2m) + E - V,]C,
For a non-trivial solution, both ratios for C.;/Cy must be equal, i.e.
C.1/Co = [(h*K*/2m) + E - Vo /V;
= V. /[h*(k + G.1)2m + E - V]
or, [E — Vo + (h’k*/2m)] [E - Vo + h*(k + G.,)/2m]

=V, V. =|Vi[* (Everything is symmetric)

(c) Dispersion relation:
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The wave-functions at the valence and conduction-band edges can be written as:
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w, (x) =2C, cos (ﬁ] and . (x)=2iC,sin (B—J
a a

These are standing waves which means electrons at these energies do not travel through the
crystal, and hence do not contribute to conduction.
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5. Moore’s law states that the number of transistors in a microprocessor is doubling
every 16-18 months.

(a) Answer should include a discussion of several of the following topics:

e Better control of fabrication techniques and materials

s Vacuum devices to solid-state

e Increase in electron/hole mobility

¢ Reduction in size of transistors

¢ Band engineering, and novel device structures
The desire to have smaller transistors has two reasons: (i) smaller means faster, as electrons
have shorter distances to travel, and there is less scattering, and (ii) smaller means higher
density, so high performance devices can be made portable.

(b) Quantum effect: Tunnelling, Explain what tunnelling is. There is a finite
probability that a particle of energy E striking a barrier of height V where V > E, will get
through! This is non-classical behaviour. Classically, we expect that at the point where E =
V, the particle will have zero kinetic energy, and will reverse it’s trajectory. Classically, you
cannot have a situation where the particle has negative net kinetic energy, so the particle
should not be able to penetrate the barrier. This purely quantum effect is called tunnelling,
and is responsible for a number of effects, such as nuclear a-decay and field emission.
Description should include some schematic of wave-function decay into “forbidden” regions.
Then, tunnelling is a problem in transistors because gate oxides are becoming thinner, and are
at the nm level. To continue reducing dimensions will lead to more tunnelling. This can be
overcome by the use of high-k dielectrics.

Classical effect: Electromigration. This is an effect whereby current flow
canses atoms in wires to move to such an extent that the wires eventually fail. This affects all
current-carrying wires. This limits the lifetime of interconnects in ICs, and as transistors and
hence interconnects shrink, the lifetime will decrease further. This can be overcome by using
materials which have low surface diffusion constants, and by coating the wires with a

passivation layer.

(c) Reason: transistors cannot continue to shrink and get faster indefinitely, and as
they get smaller, the reproducibility in properties will decrease due to the statistical spread in
doping levels.

(i) Resonant tunnelling devices use band engineering to produce double-barrier structures a

few nm apart, and rely on atomic-level manufacturing precision (MBE). Therefore, they are
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extremely difficult to make in bulk quantities, and are not very reproducible. They are
however, very fast, and because they exhibit NDR, they are useful as microwave sources.
(i) hot-electrons are electrons which have excess kinetic energy, which they gain from
passing from a region of high potential to a region of low potential. This essentially means a
heterojunction, which is easy to fabricate. Unfortunately, these hot electrons lose their excess
energy very quickly after scattering, so to utilise them in devices, the gate length must be
shorter than the mean-free path. As they are travelling ballistically (at the Fermi velocity
which is at least an order of magnitude faster than the drift velocity) devices using hot
electrons are extremely fast.
(iii) In molecular electronic devices, the functional elements are molecules, which will be
identical, so they should all have the same properties. As molecules are so small, they can
conduct electric current extremely quickly. Also, they exhibit a vast range of transport
phenomena. Answer should perhaps include a schematic of what such a device might look
like.



