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’ 1. (a) Bookwork. Answers should include:
Assume limit cycle exists; analysis using Fourier series.
Low-pass assumption, hence examine first harmonics only.

Harmonic balance condition.

Graphical intersection test for condition G(jw) = —~1/N(E).
o Approximate amplitude and frequency predictions.
o Stability/instability of limit cycle predicted.

(b} Let the input to the nonlinearity be e(¢) = E'sin(wt), and let N(E) denote the describing function.
Since the nonlinear characteristic shown is an odd function, N(F) is real, because no phase shift
occurs through the nonlinearity.

Thus N(E) = Uy /E, where U, is given by
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since f(.) is an odd function. But, from Fig.1 of the exam paper, 0 < f(e)/e < 0.5 for e # 0. Hence
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Similarly, Uy/E > 0. Thus ’(T_<_ N(E) < @ as required.

(c¢) The describing function method predicts a limit cycle if there is an intersection between the graphs
of —1/N(E) and G(jw) = a/jw(jw + 1)%.
Since 0 < N(E) < 1/2, we must have —oco < —1/N(E) < ~2, 50 a limit cycle will be predicted only
if a/jwo(jwo +1)% < —2 if the Nyquist locus crosses the real axis at frequency wy. Now we show that
this does not happen for a = 1, in two (alternative) ways:
Method 1: Find exactly where the Nyquist locus crosses the real axis:
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Hence

e
jwo(jwo+1)?| [5G+ 12| 2
Clearly there is no intersection between the Nyquist locus and —1/N(E).
Method 2: Show that R{G(jw)} > —2 for all w:
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So the whole Nyquist plot lies to the right of the vertical line #{2} = —2, and hence cannot intersect
the graph of —1/N(E).
Figure 1 shows the Nyquist plot and the graph of —1/N(E).

Figure 1: Nyquist locus and graph of —1/N(E), with a = 1, for Q.1(c). Note that the graph of —1/N(E) may
stop some way to the left of —2.
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The nonlinearity shown in Fig.1 of the exam paper lies in the sector (0,1/2) — see Fig.2. The interior
of the ‘circle’ of the circle criterion thus becomes the half-plane to the left of the vertical line through
—2. The linear system is stable, so the circle criterion requires 0 encirclements of the ‘circle’ by the
Nyquist locus, ie the locus should lie to the right of the vertical line. That this is the case can be
established as in part (c) ‘Method 2’.

Hence the conditions of the Circle Criterion are satisfied, and the feedback loop is globally asymp-
totically stable.

Now suppose that a = 3. This ‘expands’ the Nyquist locus by a factor of 3 (ie the modulus is
increased by a factor of 3 at each point, while the argument is unchanged). The Circle criterion is
no longer satisfied (see Fig.3). Thus stability of the system can no longer be deduced.

Many candidates said that the Circle criterion showed that the system is unstable with a = 3,
which is not correct, because the Circle criterion gives only a sufficient condition for stability,
not a necessary condition.

The point at which the Nyquist locus crosses the negative real axis is now changed from —1/2 to
--3/2. This is still to the right of —2, so still does not intersect the graph of —1/N(E). Thus the
describing function continues to predict that no limit cycle exists.




Figure 3: Nyquist locus and graph of —1/N(E), with a = 3, for Q.1(e).

2. (a) Assume the dynamical system is defined by & = f(z).
Direct method: Look for a Lyapunov function, ie a function V(z) which satisfies:

Vig) > 0 if z#0 (10)
V(z) continuous (11)
Vi) < 0 (12)

in some neighbourhood of an equilibrium, where V(z) = VV7 f(x). If such a function is found then
the equilibrium is stable.

If the third condition can be strengthened to V (z) < 0 then the equilibrium is asymptotically stable.
If the third condition cannot be strengthened, then asymptotic stability might still be proved using
LaSalle’s Theorem, by showing that V(z) cannot remain at zero on any non-trivial trajectory.

Indirect method: Linearise the system in the neighbourhood of an equilibrium, to obtain ¢ = Az,
where A = 0f/0z, evaluated at the equilibrium. Find the eigenvalues {);} of A. If R{A\} < 0 for
each ¢ then the equilibrium is asymptotically stable. If #{A} > 0 for any ¢ then the equilibrium is
unstable. If R{A} = 0 for some i and R{A} < 0 for all 7 then stability of the equilibrium cannot be
determined.

(b) i. For an equilibrium we need &; = 0 and €2 = 0. Thus from the first equation we get z; = z, at
any equilibrium. Then the second equation requires that

—z1 + (az; +bxp)? =0 (13)



ii.

iii.

namely

1
1 =0 or :1:1=:i:a+b (14)
Thus the three equilibria are:
z1 =0, o =10 (15)
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So the three linearised systems are:
At 2y =22 =0:
. -1 1
= [ 1 0 ]x (20)
At 1 = x5 = 1/(a + b), note that az; + bz, = 1, and hence:
&= 1 ! 21
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At 1 = 39 = —1/(a+ b), note that azy + bzs = —1, and hence:
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so that the linearisations at 21 = 22 = 1/(a + b) and at z1 = 2o = —1/(a + b) are the same.

Now check stability at each equilibrium by examining the eigenvalues of the linearised system.
Note that a quadratic polynomial has all roots in the left half-plane if and only if all its coefficients
have the same sign (from the formula for solving a quadratic equation, or from the Routh-Hurwitz
criterion).

At 21 = 9 = 0: The eigenvalues are the solutions of

A+1 ~1
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namely
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which has both roots with R(A) < 0. Thus, by Lyapunov’s indirect method, the equilibrium at
{0,0) is stable.
At z1 = 22 = £1/(a + b): The eigenvalues are the solutions of
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Again the coefficients do not all have the same sign, so at least one of the eigenvalues must have
positive real part. Thus the equilibria at z; = z2 = +1/(a + b) are unstable.

A2 — A-2=0 (27)

3.

(a) Advantages of predictive control:

o Respects input and state (output) constraints. Enables operation closer to constraints, because
of nonlinear action. This leads to lower costs/higher profits.

o Principle of operation easily understood by plant operators.

¢ Naturally handles multivariable control problems.

e Changes of plant behaviour easily accommodated by updating internal model.

Disadvantages of predictive control:

e Computational complexity: requires optimisation problem to be solved on-line. (Or storage of
pre-computed control law in extremely large database — this answer not really expected.)

e Needs good model if constraint satisfaction is to be observed accurately.

o Lack of ‘transparency’ of operation; difficult to be sure about result of optimisation algorithm;
difficult to certify or qualify for safety-critical tasks.

e Versions which guarantee robustness properties give rise to even greater computational complex-
ity than the basic version — currently not implementable for many applications.

I expect the ‘illustrations’ to be drawn from the paper-making examples presented in Dr Austin’s
lecture. But reference to any other appropriate control problem is acceptable (eg one of those
discussed in either of the recommended books).

With one exception, the illustrations were rather perfunctory.

(b) i. Suppose a (continuous) control law uy = w(xx) is applied, such that x(x.) = ue and Az, + Bu, =

z. (so that x. is an equilibrium of the closed-loop system). If there exists a continuous function
V defined on some region S containing z. in its interior, such that

o V(ze)=0

e V() >0forallz € Sif ¢ # .

e V(Az + Br(z)) - V(z) <Oforallz € §
then V is a control Lyapunov function. (And z. is a stable equilibrium, but this is not asked for
here.)

ii. A terminal control law is a control law uy = k(xy) that is assumed to be applied to the system
after the end of the prediction horizon (ie for £ > N). (If constraints are present, it is usually
assumed that all the constraints will be inactive for k > N.)

iii. Bookwork, as follows: The strategy here is to find a condition under which the value function is
a control Lyapunov function.

Let U denote the sequence of controls (uo,...,uy—1), and let U*(z) = (ug,...,u}_,) denote

the optimal sequence:
U*(z) = argm{}n J(z,U) (28)

Let V*(z) denote the value function: V*(z) = J(z,U*), and let (z7, ..., z%) denote the predicted
state sequence under the assumption that the control sequuence U* will be applied.

Note that (z = 0,u = 0) is indeed an equilibrium of the closed-loop system, because U*(Q) = 0
and V*(0) = 0.

Clearly V*(xo) > 0 if 3o # 0, since J(zo,U) > ¥ Qzo > 0.



If the control uf is applied at the first instant, a possible control sequence at the next instant is
(ua,...,un—1, Kz} ). This will give the cost

N

J(Azo + Bug, (us, .., un—1, Ka§)) = ol Pansr + ) (a7 Qaf + ui Ruf)
k=1

=V*(z0) + 241 PTNy1 — 24 Q2o — ufT Ruf — an Pz + 2nQan + a3 KTRKzY  (29)

(by subtracting the terms which have come out from V*(z,) and adding new terms entering in
the next step). But 241 = Az} + Bu} = (A + BK)z},. Hence

J(A.’Eo + BUS, (’U,l, N ,UN_I,K.’E*N)) =
V*(@o) + 23 (A+BEK)T P(A+ BK)zYy — 28 Qo —uyT Rufy — 2N Pey + 25 Qe + 2 KTRK 2
< V*@o) (30)

! (A+BK)TP(A+BK)-P+KTRK+ Q<0 (31)
This is the condition that guarantees closed-loop stability of the origin, because
V*(Azo + Buf) < J(Azo + Buf, (w1, - .., un—1, Kz})) (32)
since V* is the optimised value of J, hence the condition (31) ensures that
V*(Azo + Bug) < V*(z0) (33)

and hence that V*(.) is a control Lyapunov function.

Note: A simplified derivation for the case K = 0 would be given some credit, but note that the
condition then becomes AT PA— P < —@Q, which can only be satisfied if the system is open-loop
stable.

4. (a) A quadratic programming optimisation problem is a problem of the form:
1
min 507‘90 +976 (0 €R", g€ R",Q € R™™) (34)

subject to
M6<m and HO=h (35)

for some matrices M, H and some vectors m, h.
(The factor 1/2 is just a convention and can be omitted. The condition £ > 0 is sometimes included
in the definition — a conver QP is then obtained.)

Surprisingly many solutions omitted the constraints, thus defining a simple least-squares
rather than a QP problem.

(b) Let zo be the measurement of the current state vector, 1,z its predicted values at the next two
steps, and ug, u; the inputs to be applied at the next two steps. Then

It

) Axg + Bug = Azo + [B, 0] [ Z? } (36)

2 = Az + Buy = A%z + ABug + Buy = A%z + [AB, B] [ z(: ] (37)
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which is a quadratic function of the decision variables ug, u,. The quadratic term in g is not affected
by the choice of ug,u;, so this can be omitted from the cost function. Doing this, and collecting
terms together suitably gives the cost function as:
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which has the form of (34), with 8 = [uJ , uT}T.
The constraints |ug| < U can be written as

ue <U and ux>-U (k=0,1) (40)

which can be put into the form of (35):

0
SINE (41)
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Thus the predictive control problem has been rewritten in the standard form of a QP optimisation
problem.
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(c) A short horizon has the following disadvantages:
i. Excessively aggressive control actions; tendency to invert the plant model.
ii. More likely to be destabilising than a long horizon.
iii. ‘Short-termism’ likely to lead to dead-ends, ie it can drive the system into states from which no
feasible solution exists.

Quite a few solutions were disquised versions of “A horizon of length 2 is too short because
it is not long enough.”
The horizon length N is limited by:

i. Computational complexity — the number of decision variables increases when N increases.

ii. The likelihood of infeasibility when a ‘robust MPC’ problem is posed, eg when unmeasured
disturbances from a bounded set are allowed.

iii. The deterioration of prediction quality far into the future.

(The discussion could distinguish between the ‘control horizon’ which is relevant for point (i) and
the ‘prediction horizon’ which is relevant for points (ii) and (iii).)

(d) Offset-free tracking of piecewise-constant set-points is obtained by one of the alternative strategies:



i. Penalise deviations of the controls from an ‘ideal’ value, so up — ug terms appear in the cost
instead of ug terms, and use an observer to estimate the value uy which corresponds to the
current set-point.

ii. Penalise changes in the controls, Auy == up — up—1, rather than the controls themselves, and
model tracking errors as piecewise-constant output disturbances.

(NB: Only one of these is expected from candidates. The second can be shown to be a special case
of the first.)




