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1 (a) Describe the Recursive Least Square (RLS) method for adaptive filtering.
Your answer should include the following points: a definition of the relevant signals
and the cost function being minimised; the influence of the forgetting factor on tracking
performance and misadjustment; whether the RLS method converges to the Wiener filter
for a particular value of forgetting factor and why.

(b) Fig. 2 depicts an impulse response identification problem. The coefficients of
the FIR filter are to be identified using a known input sequence {u(n)},>o. The output
of the filter y(n) is measured by an imperfect sensor, which can be modelled as the filter
output with additive noise v(n). Assume that E{v(n)} = 0, E{v(n)?} = ¢ and that the
impulse response of the filter to be identified is [By, ..., Br.—1]7.

Explain how to solve the identification problem using RLS assuming knowledge of
L. For the case L = 2 and given that f§; = 1, compute the RLS solution at time n.

(c) Explain how to solve the same general identification problem using the
Steepest Descent and the Least Mean Square (LMS) algorithm, once again assuming you
are given the value of L only. Assuming thatu(n) = ):,?i 61 a;w(n— iy where E{w(n)} =0,
E{w(n)?} = 62, E{w(k)w(l)} = 0 when I # k, what is the stability condition for the LMS

algorithm? (Hint: use an appropriate estimate of Amax.)
Solution:

Part (a) The input signal {u(n)}, reference signal {d(n)}, filter h =
[ho, B1,- .., har—1]" € RM. The output signal {y(n)} is

M-1

y(n) = Z hu(n—k) =u’ (n)h
k=0
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3
The error signal {e(n)}, e(n) = d(n) —u’ (n)h
At time 1 RLS aims to minimise the cost function

J (h,n) = i A" *e? (k)
k=0

where 0 < A < 1. A is a called the forgetting factor

For A < 1, J (h,n) regards the past errors as less important since they are weighted
by A"k, The smaller A is, the quicker the RLS will respond if the Wiener filter is time
varying (better tracking)

For A = 1, RLS solution converges to the Wiener filter because

1 n
! Olae = 57 X A0

This is a sample average and should converge to E { e (k)} So, we can now argue
that the RLS solution (asymptotically) and the Wiener filter coincide when A = 1 since
dividing J (h,n) by n+ 1 does not change the minimizer.

E[ez(”)] ~Jmin 1=\
Jmin T 1+A

Misadjustment is
Part (b)

Following on from the solution to part (a) the error signal for solving the
identification problem should be:

the error signal at time n is e(rn) = z(n) — hTu(n) where h = [ho,k1,...,h_]%,
u(n)= [u(n),u(n—1),...,u(n—L+1)]%.

Note the length of the filter is L.

For the case when L = 2, z(n)} = u(n) + Bu(n— 1) +v(n).

Since we are told that Sy = 1, we can seth = [l,hl]T so the only parameter to be
adapted is ;. This gives e(n) = (B — hy)u(n—1)+v(n)

The cost function at time 7 is Y}_, e(k)2an—k

Differentiating w.r.to hy gives Y}, 2e(k)A" *u(k —1)

Setting the derivative to zero yields the solution to the RLS problem at time n, which
is,

)ﬁ_" AR [2(k) — u(k) u(k—1) = by )ﬁ_" ARy (k= Du(k - 1)
k=0 k=0
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Note the solution is in terms of the sensor output and known input signal.
Part (c)

The Steepest Descent cost function is J(h) = E{e(n)?} where e(n) = z(n) —hTu(n)
where h = [ho,hl,...,hL_l]T, u(n)=[u(n),u(n —1),...,u(n — L+ 1)]T as in part (b).
Note length of filter is L.

The SD recursion is
h(n+1) = (1) =S VI (b))
= h(n)+p(p—Rh(n))
where p = E{z(n)u(n)} and R = E{u(n)u(n)T}
The LMS recursion is
h(n+1) = h(n) + se(n)u(n)

where e(n) = z(n) —h(n)Tu(n)
The stability condition for the SD and LMS algorithm is 0 < p < 2/Amax
Use the following estimate for Amax < ):,%:1 Ay =trace(R) = LE {u(n)?}

For the given input signal E {u(n)?} = ):ﬁ,‘ial Ot,-ZE{w(n —i)2} =02 ):ﬁ_lial o2

4
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v(n)

u(n) — FIR W@—) z(n)

Fig.2

2 (a) Describe the Recursive Least Square (RLS) method for adaptive filtering.
Your answer should include the following points: a definition of the relevant signals
and the cost function being minimised; the influence of the forgetting factor on tracking
performance and misadjustment; whether the RLS method converges to the Wiener filter

for a particular value of forgetting factor and why.

(b) Fig. 2 depicts an impulse response identification problem. The coefficients of
the FIR filter are to be identified using a known input sequence {u(n)},>0. The output
of the filter y(n) is measured by an imperfect sensor, which can be modelled as the filter
output with additive noise v(n). Assume that E{v(n)} =0, E{v(n)?} = 6 and that the
impulse response of the filter to be identified is [By,. .., Br.—1]-

Explain how to solve the identification problem using RLS assuming knowledge of
L. For the case L = 2 and given that 3 = 1, compute the RLS solution at time n.

(c) Explain how to solve the same general identification problem using the
Steepest Descent and the Least Mean Square (LMS) algorithm, once again, assuming you
are given the value of L only. Assuming thatu(n) = ):?i 61 o;w(n—i) where E{w(n)} =0,
E{w(n)*} =02, E{w(k)w(l)} = 0 when [ # k, what is the stability condition for the LMS
algorithm? (Hint: use an appropriate estimate of Amax.)
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3 (a) Consider an infinite collection {y};>¢ of random variables where
Vr =X+ V.

Describe the Gram-Schmidt orthogonalization procedure for forming the minimum
variance linear estimator of x using the first 7 random variables from this collection.

For the case T = 2, you are given E(xy;) = 0.1, E(xy;) = 0.3, E(y1y3) = —0.2,
E(y%) =1,E (y%) = 1.5. Compute the coefficient of y; and y, of the estimator given by
the Gram-Schmidt procedure. (Hint: write £ as a function of y; and y, explicitly and
compute the coefficients.)

(b) A constant temperature 6 is measured with the use of noisy sensors. The
measurement made by sensor i is y; = 8 + v; where v; is a Gaussian random variable
with mean 0 and variance 6. Assume random variables {v;};— 1,2,...,7 are independent.
Compute the minimum variance linear unbiased estimator for 7 = 2 and compute the

minimum variance

(¢) Letthe ith sensor variance be O'i2 = i. Using the answer derived in the previous
part, estimate the value of T needed to reduce the variance of the estimator to less than
6/11.

Solution:
Part a)
We must first make {y;,...,yr } orthogonal. Set&; =y;. ForT > j > 1,

&§=3- L E(é?; i

i=1 i

Now project x onto {&;,...,€r},

T
X= Z ;.
SE(¢f)
Partb) ForT =2,x= E(x€21) &+ E(xezL)sz where & =y, — E(yzgl)yl
E(s:l) E(sz) E(yl)

E (xe)) =O.1,E(812) =1

E (x&3) = E (xy;) — Z02UE (xe)) = 03— =020.1 = 0.32
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N 2y E0)? e oom—
E()=E0)~"p2H-=15-004= 146
1
S0 % =0.1y; + 932(y, +-0.2y;) = 0.1438y; +0.2192y,

Part ¢)

Using (y1,y2), propose an estimate of 8 of the form
0 = a1y1 +a2y

and determine (ay,a;) for this estimate to be unbiased and to admit a variance as low as

possible. Since

E{e} = a1E{y1}+®E{y;}
= (a1+a2)6

we require
ajt+ay=1

for the estimator to be unbiased. Variance of the estimate:

var{a} = E{(é—E(a))z}
= E{(ajv +avy)*}

22,22
= 410y +a30)

Now substitute a, = 1 —aj in to get

var{é} = a0t +(1+a?—2a;)07

= a%(cl2 + 022) —2a; 0'22 + 0'22

Taking the derivative with respect to a; and setting it to zero gives

2
9

L
0]+ 0,
2
_ %

7, 2"
0y +0;

ay =

a; =

The minimum variance is a%O'l2 + a% 0'22 with above values of a; and a; which yields

2.2
010,

2 2
o] +6;
Version: 1 (TURN OVER for continuation of Question 3



Part d)
For T =2, the minimum variance
2.2
2 2
O'l + 0'2

This answer is to be interpreted as the product of variance divided by the sum of variance.
Substituting numerical values gives 2/3.

For T = 3, treat the optimal solution for the T = 2 case as a single sensor which
measures the temperature with additive noise which has mean zero and variance 2/3.

2/3%3 6

2/3+9/3 11
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4 (a) Describe the parametric approach to power spectrum estimation, including a
brief discussion of the ARMA model, the AR model, and their power spectra.

Answer:

Bookwork as follows from lecture notes (more detailed than required):

*Periodogram-based methods can lead to biased estimators with large variance

oIf the physical process which generated the data is known or can be well
approximated, then a parametric model can be constructed

Careful estimation of the parameters in the model can lead to power spectrum

estimates with improved bias/variance.

*We will consider spectrum estimation for LTI systems driven by a white noise

input sequence.

*If a random process {X,} can be modelled as white noise exciting a filter
with frequency response H (e/®7) then the spectral density of the data can be

expressed as:

Sx (/") = of |H(/*T)?

where O'v% is the variance of the white noise process. [It is usually assumed
that G,% = | and the scaling is incorporated as gain in the frequency response}

*We will study models in which the frequency response H(e/®T) can be
represented by a finite number of parameters which are estimated from the

data.

*Parametric models need to be chosen carefully - an inappropriate model for

the data can give misleading results

ARMA Models
A quite general representation is the autoregressive moving-average (ARMA)

model:

*The ARMA(P,Q) model difference equation representation is:

P Q

Xn = — 2 ap.Xn—p+ 2 qun—q (l)
p=1 q=0

Version: 1 (TURN OVER for continuation of Question 4
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where:

ap are the AR parameters,

bg are the MA parameters

and {W,} is a zero-mean stationary white noise process with unit variance,
2 _
o, =1.

*Clearly the ARMA model is a pole-zero IIR filter-based model with transfer
function

where:
P Q
A(z)=1+ ) apz™?, B(z)=) bgz™?
p=1 q=0

With Q = 0 we have the AR model and with P = 0 the MA model.

*Unless otherwise stated we will always assume that the filter is stable, i.e.
the poles (solutions of A(z) = 0) all lie within the unit circle (we say in this
case that A(z) is minimum phase). Otherwise the autocorrelation function is
undefined and the process is technically non-stationary.

*Hence the power spectrum of the ARMA process is:

_ BT

T
)= ey

The ARMA model is quite a flexible and general way to model a stationary random

process:

*The poles model well the peaks in the spectrum (sharper peaks implies poles
closer to the unit circle)

*The zeros model troughs in the spectrum

*Complex spectra can be approximated well by large model orders P and O

Note however, that model order determination is critical for ARMA modelling and an
ARMA model may not be appropriate for certain datasets.

(b) Write down an expression for the prediction error at time index n for an

autoregressive model of order P.

Version: 1 (cont.
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By considering minimisation of an appropriate function of this prediction error
corresponding to a finite length of data xy, ..., xy_1, show that the vector of autoregressive

parameters a may be estimated as
a=—(XTX)"1xTx

where x and X, which are a vector and matrix containing observed data values, should be
carefully defined.

Explain how the covariance and autocorrelation methods can be obtained from this
method and briefly summarise the properties of each.

Solution:

The AR model can be written equivalently as:

P
Xn = — apXn—p~+en (2)
p=1

where ¢, is a white noise sequence having variance 0',32 = b(z).

An alternative interpretation of this equation is that:
Xn = .fn +e n

where:

P

.fn = - Z Clen__p
p=1

is a prediction of x, from previous data and the term ey is the prediction error. In terms

of ey, equation 2 becomes:

P
en =Xp+ Z ApXn—p
p=1

Suppose we write this equation for all values of # such that
np<n<np

All of these equations may be expressed in matrix notation as:

Version: 1 (TURN OVER for continuation of Question 4
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where:
€ny Xny
_ €ny+1 X = Xnp+1
€np Xnp
Xnp—1 Xny-2 - Xp—P
Xn Xpy—1 ev Xp,—Pi1
X — 1 . 1 .”I + 3)
Xnp—-1 *np—-2 -+ Xnp—P
and
a)
az
a= .
ap

Two particular cases for ny and ng will be considered shortly.

Version: | (cont.



13
If we wish to find the AR parameters which fit the observed data ‘best’, then it
would seem reasonable to minimize the prediction error terms (i.e. an ‘ideal’ model for
the data would have zero prediction errors).
A convenient way to achieve this by choosing the parameter vector a which
minimizes the total squared prediction error, E:

ng
&=Y e=ele
n=ny
where el denotes the transpose of e.

We recognise this as a standard least squares estimation problem, as studied in 1B
Linear Algebra, so we obtain the solution immediately:

a=—(X"X)"1x"x

An alternative derivation seeks to minimize the function directly. In order to find the
minimum of eTe with respect to all of the elements of a we must solve the P simultaneous
-equations:

d(eTe)
da;
We can express the same thing in vector notation as:

d(eTe) _
da

0p

where

raeTe)]

d(eTe) _

day =
3a : and 0p

2(eTe) 0l
e

deTe) . . .
[so =5, is just the gradient vector from vector calculus].
Now, expand ele and differentiate:

e=Xx-+Xa

ele= (x+Xa)T(x+Xa)

Version: 1 (TURN OVER for continuation of Question 4
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= x1x + 2xTXa + aTXTXa
d(eTe) _ 2B(XTXa) + d(aTXTXa)
da da Jda
=2XTx+2XTXa

Here we have used two standard results from matrix/vector calculus:

d(bTa) _9I(ah) _ d(aTBa)
32 = oa ~Ppad—

for constant vector b and symmetric matrix B.

=2Ba

[You can verify these by differention term by term. See, for example Therrien,
Appendix A.]

For a maximum or minimum of ele:

P T
%) _,
da
Therefore,
2XTx+2XTXa =0 4)

and finally, provided X is full rank,

a=—(XTX)71X"x

Version: | (cont,
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It is of interest to consider the form of the terms in this expression for the AR
coefficient vector a. First notice that X (see equation 3) may be expressed as:

X=[X_1 X_2 ... X_p]

where
T
x_p = [an_p xnl_p_‘_l v an—P]
Hence we can write
T
X
XTx=|"-2 [X_l X_2 ... X_p]
T
X_p

whose (i, j)th element is

np
XTX) ) =xLx_j= Y xnoitne )

n=njy

Similarly, XTx can be expressed as:
XTx=|"-2|x

whose ith element is
T &
(XTX)(i) =X X= Z Xn—iXn
n=nj
Notice also that equation 4 can be rewritten as:
XTx+XTXa =XT(x+Xa)=XTe=0

Hence we have that ine =0fori=1,2,...,P,ie. at the least squares solution the error
is orthogonal to all the columns of X. This is a well-known property of least squares.

We now consider two commonly used methods, based on different values of n; and
nr. In both cases it is assumed that exactly N data points are available, xg,x1,...,xy_1.

Covariance method

Version: | (TURN OVER for continuation of Question 4
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*The covariance method minimizes only those error terms which can be fully
calculated from the data

*Examine the error equation:

P
en =Xn+ Z ap.x”—p
p=1
*The first error term that can be fully calculated is ep and the last is ey_;.

*Hence n; = P and np = N — 1 in the squared error equation:
N-1
&C = Y e
n=pP

*The resulting matrix XTX is not Toeplitz. Although fast algorithms exist to
solve for a, they are much more complex than for the autocorrelation method.

*The AR parameter estimate is not guaranteed to be stable

*The method is intuitively appealing as it does not attempt to make guesses
about data that aren’t observed.

*The covariance method is a good approximation for moderately large N
to the true maximum likelihood estimate [see Module 4F6 - Detection and
Estimation].

Autocorrelation method

*In the autocorrelation method ny =0 andnp =N+ P—1

*Hence the squared error minimized is:

N+-P-1
&b = Z e,21
n=0
*To calculate these error terms requires data before n = 0 and aftern =N — 1.

These data points are assumed to be zero.

Consider the elements (XTX)(,-, j) (equation 5), when i > j:

T N+P-1
X'X)ij)= Y n—idn-j
n=0
N+j—1
= Z Xn—iXn—j
n=i
N+ j—i—1
= Z xn/xn/+(,-_j)
n'=0

Version: | (cont.



17
and since XTX is symmetrical, for j > i:

. N4iej—1
(X X)(l,]) = IZ xnlxnl+(j__i)

n'=0
Now, letting k = |i — j| we have overall:
T N—-k-1
X' X=X n¥nk
n=0

Hence XTX is Toeplitz, which means that the efficient Levinson recursion
(O(Pz)) can be used to solve for a.

*Note that the autocorrelation method is equivalent to estimating the
autocorrelation function using the biased estimate and then solving the matrix

Yule-Walker equations directly
*The parameter estimate is guaranteed to be stable
*However, the assumption of zeros before the start and after the end of the data

are likely to make the estimate less accurate than the covariance method for
small N

A discrete time function is defined as:
xg=1,x1=-09,x =0.81, ...

ie. the general term is x, = (—0.9)". Write down an autoregressive model with order
P = 1 which fits this function perfectly (i.e. with zero prediction error for any n > 0.

Now compute estimates of order P = 1 autoregressive models from data points
XQ, X1, ---XN—1, using both the autocorrelation method and the covariance method.

Comment on the similarity between these estimates and the model which fits the
data perfectly. What happens to this similarity as N tends to infinity?

Solution: The solution to part b) with P =1 has:

ng
Xy XeXp—1

1= ~anF 3
Enf x%—l

For the covariance method, set n; = | and ngp = N — 1. Then
o = = — =
Yol %2, L (—0.9)%2
Version: | (TURN OVER for continuation of Question 4
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i.e. the covariance method always matches the perfect fitting model, since it attempts to
minimise the prediction error within the data (i.e. not making assumptions of data outside
the measured block).
For the autocorrelation method, set ny = 0 and ng = N, but note that some terms in
the summations are zero, since we assume x_1 = 0 and xy = 0. Allowing for these zero

terms, we get:

auto _ 2:11\!_-1('_0‘9)216_1
! YV (~0.9)2-2
(=0.9)(1—(-0.9)N-1)
1-(—0.9)

(1-(=0.9/V)
1-(=0.9)

1—(-0.9)V-1
1—(-0.9)N

~ 0.9 £-0.9

Hence the autocorrelation method is in error. However, as N — oo it clearly tends to

the correct answer, since the terms (—0.9)", etc. go to zero in this case.

Version: 1
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5 (a) Define the bias and variance of an estimator for a random quantity, explaining
how they can be used to evaluate the estimator’s performance. [20%]
Solution:
Definition: Unbiased Estimators

*An estimator § of a random quantity @ is unbiased if the expected value of
the estimate equals the true value, i.e.

E[6] =06

Otherwise the estimator is termed biased.

*The variance of an estimator measures how much variability an estimator has
around its mean (expected) value. It is defined as:

var(6) = E[(6 — E[6])*]

*Hence we expect that a ‘good’ estimator will make some suitable trade-off

between low bias and low variance.

(b) In a power spectrum estimation method for a wide-sense
stationary and ergodic random process, the data is first windowed using a
window function wy having length N, ie. wy =0forn <Oandn>N-—1.

The autocorrelation function is then estimated as

1 N-1-k

Ryx[k] = N Y, (wnxn) Wniaxnik), fork=0,1,...,N—1
n=0

and
Ryx k] = Rxx|—k], fork=—1,-2,...,—~N+1

where the x, are measured values drawn from the random process.
Show that the expected value of the autocorrelation function
estimate is given by

. 1 N-1-k
E[Rxx[k]] = Rxx[k] Y wawnir)

n=0

where Ryyx[k] is the true autocorrelation function for the process.
Is this an unbiased estimate? [20%]
Solution:

Version: | (TURN OVER for continuation of Question 5



20

N—1-k
ElRexl] = El; L () Ornsssd)
1 N— _];

N ng,o WnWy i E [x,,)(x,,_,_k)]

1 N-1-k
):, WnWn ik Rx x [k]

N—-1-k

—Rxx[kll );,0 (WnWnir)

i.e. it is biased in general.

A. B. Show that the expected value of the corresponding power
spectrum estimate is:

1 : .
——=Sx (/) % |W (e/OT)?

ElSx (/)] = 5

where Sy (e/®T) is the true power spectrum of the random process,
W (e/®T) is the DTFT of the window function wy, and * denotes the
convolution operator. [40%]
Solution:
We have from lectures on the periodogram that

E[Sx (/")) = E[DTFT{Rxx[k]}] = DTFT{E[Rxx (K]}

Then, note that

N-1-k

Z (WnWpii) = {wn}*{w_n}

n=0
whose DTFT is:

W(eTOTYW* (e1oT) = W (eoT) 2
But, this term is multiplied (in time) with Rxy [k]. Hence overall

the DTFT is:

1

E[Sx(e/°T)] = SN

5= Sx(/T) (W (/TP
as required
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C. How might this modified autocorrelation method be used improve
the performance and properties of the standard periodogram estimator?
Solution: First, note that the estimate will always be positive,
which is an improvement in properties. Second, note that the convolution
of a suitable window spectrum |W (¢/®T)|? will smooth out the spectrum
and hence give a trade-off between noise-like randomness against

frequency resolution.
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