
Solutions to 4F10 Pattern Processing, 2008

1. Bayes’ Decision rule and generative models
(a)(i) Bayes’ decision rule states

Decide argmax
ωj

{P (ωj|x)}

which can be expressed for the generative classifiers here as

Decide argmax
ωj

{p(x|ωj)P (ωj)}

[10%]

(a)(ii) A number of points should be discussed

• Generative models use Bayes’ decision rule to express the posterior class prob-
ability in term of the likelihood and class priors

• Generative models are minimum error classifiers is if there is

– infinite training data

– correct models (likelihood and priors)

– appropriate training algorithm

• Discriminative models directly model the class posteriors.
[20%]

(b)(i) The expression for the probability of error is

P (error) = P (x ∈ Ω2, ω1) + P (x ∈ Ω1, ω2)

= P (x ∈ Ω2|ω1)P (ω1) + P (x ∈ Ω1|ω2)P (ω2)

=
∫
Ω2

p(x|ω1)P (ω1)dx+
∫
Ω1

p(x|ω2)P (ω2)dx

[15%]

(b)(ii) From the inequality given, a ≤
√
ab, if a ≤ b∫

Ω2

p(x|ω1)P (ω1)dx ≤
∫
Ω2

√
p(x|ω1)P (ω1)p(x|ω1)P (ω1)dx

as by definition in the region where class 2 is labelled

p(x|ω1)P (ω1) ≤ p(x|ω2)P (ω2)

A similar expression can be obtained for region Ω1. Thus

P (error) ≤
∫ √

p(x|ω1)P (ω1)p(x|ω2)P (ω2)dx

[25%]
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(b)(iii) An expression can be obtained based on the inequality in part (b)(ii). The
product of two Gaussians is a, un-normalised, Gaussian. Consider

N (x;µ1,Σ)N (x;µ2,Σ) =
1

(2π)d|Σ|
exp

(
−1

2

(
2xΣ−1x′ − 2(µ1 + µ2)Σ

−1x′ + µ1Σ
−1µ′

1 + µ2Σ
−1µ′

2

))

Taking the square-root of this gives

1

(2π)d/2|Σ|1/2
exp

(
−1

2

(
xΣ−1x′ − 2

(µ1 + µ2)

2
Σ−1x′ +

1

2
(µ1Σ

−1µ′
1 + µ2Σ

−1µ′
2)

))

Integrating a Gaussian yields 1, so

P (error) ≤ K
∫
N (x;

(µ1 + µ2)

2
,Σ)dx = K

where the constant K can be expressed as (not forgetting the prior)

K =
1

2
exp

(
1

8
(µ1 + µ2)Σ

−1(µ1 + µ2)
′ − 1

4
µ1Σ

−1µ′
1 −

1

4
µ2Σ

−1µ′
2

)

[It was also acceptable to find an expression based on the equality in part (b)(i). This
yields an expression in terms of cumulative density functions and requires finding the
decision boundary.] [30%]
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2. Training Logistic Regression and the use of the Hessian

(a) Linear decision boundaries passing through the origin. [10%]

(b) The log-likelihood of the data from class ω1 can be written as

L(b) =
n∑

i=1

(yi log(P (ω1|xi,b)) + (1− yi) log(P (ω2|xi,b))

=
n∑

i=1

(yi log(P (ω1|xi,b)) + (1− yi) log(1− P (ω1|xi,b))

[10%]

(c)(i) Differentiating

∂

∂b
P (ω1|x,b) =

exp(−b′x)

(1 + exp(−b′x))2
x

= P (ω1|b,x)(1− P (ω1|b,x))x

Thus

∂

∂b
L(b) =

n∑
i=1

xi (yi(1− P (ω1|b,xi))− (1− yi)P (ω1|b,xi))

=
n∑

i=1

xi (yi − P (ω1|b,xi))

This can be used in a gradient style approach where

b(k+1) = b(k) + η
∂

∂b
L(b)

∣∣∣∣∣
b(k)

[30%]

(c)(ii) Element j, k of the Hessian is

hjk =
∂2

∂bj∂bk
L(b)

Using the above expression

∂

∂bj

(
n∑

i=1

(yi − P (ω1|b,xi))xik

)
= −

n∑
i=1

P (ω1|b,xi)(1− P (ω1|b,xi))xijxik

This can be expressed in matrix form as

H = − [x1, . . . ,xn]


P (ω1|b,x1)(1− P (ω1|b,x1)) . . . 0

...
. . .

...
0 . . . P (ω1|b,xn)(1− P (ω1|b,xn))




x′
1
...
x′
n


′
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Thus

S = [x1, . . . ,xn]
′

R =


P (ω1|b,x1)(1− P (ω1|b,x1)) . . . 0

...
. . .

...
0 . . . P (ω1|b,xn)(1− P (ω1|b,xn))


[25%]

(c)(iii) The Hessian may be used for optimisation as

b(k+1) = b(k) +H−1 ∂

∂b
L(b)

∣∣∣∣∣
b(k)

where the Hessian is evaluated at the b(k). Should discuss

• No need to compute η major issue with gradient descent

• If error surface is quadratic - straight to solution

• Hessian may involve computing a large number of parameters (if feature-space
is large).

[15%]

(c)(iv) The Hessian is negative-definite for this problem. This implies that the error
function is a concave function so has a unique maximum. [10%]
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3. ML prediction and Gaussian Processes

(a)(i) [From lecture notes] Consider a basis function of the form ϕ(||x− xi||), where
ϕ() is some non-linear function and ||x − xi|| is a distance of the vector x from
the prototype vector xi. For the case of n training examples each being used as a
prototype, the mapping can be defined as

f(x) =
n∑

i=1

wiϕ(||x− xi||) = ϕ(x)′w

where

ϕ(x) =
[
ϕ(||x− x1||) . . . ϕ(||x− xn||)

]′
The output value is again considered to be

y = f(x) + ϵ

The values for w needs to estimated. Following the standard linear interpolation
example, for the training data

Φ =


ϕ(||x1 − x1||) . . . ϕ(||x1 − xn||)

...
. . .

...
ϕ(||xn − x1||) . . . ϕ(||xn − xn||)

 =


ϕ(x1)

′

...
ϕ(xn)

′


So for the training data

y = Φw + ϵ

If the inverse Φ−1 exists then the ML estimate is

ŵ = Φ−1y

It has been shown that for a large class of functions ϕ() if the set of points x1, . . . ,xn

is distinct then Φ−1 exists. [30%]

(a)(ii) As the noise is independent of f(x), the prediction is

p(y|w,x) = N (y;w′ϕ(x), σ2
ϵ )

[10%]

(b)(i) the form of the squared exponential function is

k(xi,xj) = α exp

(
−||xi − xj||2

2σ2
l

)

This is a stationary covariance function. [15%]
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(b)(ii) Interested in the joint distribution[
f(x)
y

]
∼ N

(
0,

[
k(x,x) k(x,X)′

k(x,X) K(X,X) + σ2
ϵ I

])

Using the equality given in the question

p(f(x)|y,X) =

N (f(x);k(x,X)′(K(X,X) + σ2
ϵ I)

−1y; k(x,x)− k(x,X)′(K(X,X) + σ2
ϵ I)

−1k(x,X))

Again to get the distribution of y the noise variance is simply added. So

c = k(x,x)

d = k(x,X)

E = K(X,X) + σ2
ϵ I

[30%]

(c) Points to mention are

• Prediction variance using Gaussian process is always larger

• Gaussian process variance increases as distance from training points increases
[15%]
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4. M ixture Models and the Exponential Family

(a) Log-likelihood of the training data is

log(p(x1, . . . , xn|λ1, . . . , λM)) =
n∑

i=1

log

(
M∑

m=1

cmλ
xi
m(1− λm)

(1−xi)

)
[15%]

(b)(i) EM is an iterative approach to estimating the model parameters. Given the
current estimates of the model parameters, λ, the new estimates, λ̂, are found using

• Compute component posteriors, P (ωm|xi,λ), using current parameters.

• Using the Auxiliary function, Q(λ, λ̂), compute the new parameters.
[15%]

(b)(ii) Substituting in the expression for the likelihood to the auxiliary function

Q(λ, λ̂) =
n∑

i=1

M∑
m=1

P (ωm|xi,λ)
(
xi log(λ̂m) + (1− xi) log(1− λ̂m)

)

Differentiate this with respect to λ̂q give

∂Q(λ, λ̂)

∂λq

=
n∑

i=1

P (ωq|xi,λ)

[
xi

λ̂q

− (1− xi)

(1− λ̂q)

]

Equating to zero gives

(1− λ̂q)
n∑

i=1

P (ωq|xi,λ)xi = λ̂q

n∑
i=1

P (ωq|xi,λ)(1− xi)

Rearranging yields

λ̂q =

∑n
i=1 P (ωq|xk,λ)xi∑n
k=1 P (ωj|xi,λ)

[30%]

(c)(i) Re-expressing the Bernoulli distribution

p(x|ωm, λm) = λx
m(1− λm)

(1−x)

= exp (x log(λm) + (1− x) log(1− λm))

= (1− λm) exp

(
x log

(
λm

1− λm

))
so

αm = log

(
λm

1− λm

)

Zm =
1

(1− λm)
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[20%]

(c)(ii) Substituting in the expression for the exponential family

Q(α, α̂) =
n∑

i=1

M∑
m=1

P (ωm|xi,α)
[
− log(Ẑm) + α̂mf(xi)

]
Points to mention are:

• Sufficient statistics for auxiliary function are simply

n∑
i=1

P (ωm|xi,α);
n∑

i=1

P (ωm|xi,α)f(xi)

• Solution is not normally linear as Zm is a function of αm. [20%]
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5. Support Vector Machines and Speaker Verification

(a)(i) The following steps are used in Speaker Verification with SVMs

• Train the UBM GMM on all the enrolment data.

• MAP adapt the UBM GMM to the enrolment data of each of the speakers.

• For each enrolled speaker compute the Fisher score-space. To obtain “negative”
examples use other speaker’s data with the same adapted GMM.

• Train the SVM

• During verification, extract the SVM for the claimed identity and recognise.
[20%]

(a)(ii) The log-likelihood may be expressed as

log(p(O(m)|θ)) =
T (m)∑
i=1

log

(
M∑

m=1

cmN (oi;µm,Σm)

)

Standard problem to compute the score-space (described in lectures) Considering
just the means of a GMM

ϕ(O(m)) =


∑T (m)

t=1 P (1|ot, θ̂)Σ̂
−1

1 (ot − µ̂1)
...∑T (m)

t=1 P (M|ot, θ̂)Σ̂
−1

M (ot − µ̂M)


This is a M × d features vector. [30%]

(b)(i) For the linear kernel, the sequence kernel looks like

k(O(m),O(n)) =
T (m)∑
i=1

T (n)∑
j=1

o
(m)′
i o

(n)
j

=

T (n)∑
j=1

o
(m)′
i

T (m)∑
i=1

o
(n)
j


= T (m)T (n)µ(m)′µ(n)′

Compare this to the Fisher kernel with a single component (assuming µ = 0)T (m)∑
i=1

Σ−1(o
(m)
i − µ)

′T (n)∑
i=1

Σ−1(o
(n)
j − µ)

 = T (m)T (n)µ(m)′Σ−2µ(n)′

The covariance matrix for the component should be an identity matrix for the two
kernels to yield the same values. Also the global mean, µ, needs to be zero. This
equates to sphering the data prior to constructing the classifiers. [25%]
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(b)(ii) Gaussian kernel has the form

k(xi,xj) = exp

(
−||xi − xj||2

2σ2

)

The following points should be mentioned

• Fisher kernel requires explicit mapping into the feature-space, this is not neces-
sary (or possible) for the Gaussian kernel.

• The computation cost for the Fisher kernel is a function of the number of com-
ponents M .

• Both schemes use non-linear transformations to derive the feature-space.

• Computational costs are

– Fisher kernel, O(T (m)) + T (n)) for to derive posteriors - Md dot-product.

– Sequence kernel, O(T (m))T (n)) as all combinations of observations exam-
ined. [25%]
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