: o SPEECH AR LA URIGE PROF fC
2008 TB LFil S}

PROCESS 110G

ggtl)%tions to 4F11 Speech and Language Processing,

1. Statistical Speech Recognition & HMM Training

{a) The generic speech recogniser is

s

The primary models are the acoustic model and the language model. The language
model assigns a probability P(W) to sentence hypotheses W constructed from words
in the vocabulary (which also defines the pronunciation in terms of the acoustic model
units). The acoustic model assigns likelihood p{(O|W) to the acoustic observation
sequence which is produced by the front-end (e.g. MFCCs). The search process finds
the modt likely string. Adaptation, if used can be performed to tune the parameters

of the acoustic and language models.
(b)(i) The forward probability is defined as
a;(t) = ploy,. .., 04, x(t) = J|A)
where z(t) denotes the state occupied at time ¢, and A represents the HMM parameter

set.
The backward probability, 3;(t), is defined as

,Bj(t) = p(0g41,. -+, OT'm(t) =737

a;(t) can be computed efficiently

N
Bi(t) = Z: a;(t — 1)as;bi(oy)

where a;(0) = 1 for 7 = 1 and zero otherwise. Recursion moves forwards in time.

B;(t) can be computed efficiently
N
Bi(t) = D_ ajibi(0e41) At + 1)
i=1

1

[25%)]

where §;(T + 1) = a;n. Recursion moves backward in time. Note p(O = (;(0).

(b)(i)

o;(1)B;(t) = plor...04z(t) = j|INp(op1. ..o |z(t) = j, A)
= p(0,z(t) = jIM)
= p(ON)P(z(t) =71),N)
= p(ON)L;(t)

Hence,

1

Lj(t) = O ()8;(¢)

(c) A composite HMM is constructed for each sentence in the training corpus accord-
ing to the word level transcription (allowing for optional silences), and the pronun-
ciation dictionary. If there isn’t a single pronunciation per word then the composite
HMM has branches and either the Viterbi algorithm can be used to select pronunci-
ation variants (given some initial models) or run forward-backward on the network.
Note that this is also an issue for optional inter-word silences. Then the forward-
backward algorithm is run on the complete sentence-level composite HMMs and
suitable statistics for HMM training found. The HMMs can be initialised typically
either by a flat start (all parameters equal, just define left-to-right topology) or by
using some estimates of HMM parameters from a phone-level labelled set of data.

(d)(i)/(ii) Forward probability pruning. Calculate the maximum value of log o;(t) at
each time and only consider models which have a maximum value log «;(t) within a
threshold. The same method can be applied on the backwards pass to the log f;(t)
values. The state posterior is found from ;()0;(¢) and a threshold on this from the
maximum value gives a very tight beamwidth. In practice the a;(¢) pruning results
in a beam a few words wide and the posterior pruning is then one or two phones
wide. Note that this is very important for long utterances since only a few percent
of the models can be active and greatly speeds training.

. Modifications for Speech Recogniser

(a) MFCCs - take cosine transform of log filterbank energies (assuming that the
filterbank is on a mel scale). Might take a vector of 24 energies and compute 12
MFCCs. If P channels and m; is the energy of the jth channel then the MFCC

component

This will reduce computation (smaller feature vectors) and storage. It will also
increase accuracy as diagonal covariance matrices are a better approximation.

2

[25%)

(10%)]

[20%]

[20%)]

[20%)]

(b) It is proposed to add MFCC time differentials to the feature vector. Normally
these are smoothed over several frames. They take account of the first-oder local
dynamics to account (in part) for the poor HMM assumptions. The change will
increase accuracy but make the feature vector two or three times as large and will
increase computation (unless pruning is more effective due to increase in accuracy).

(c) The state distribution is not completely uncorrelated and may be non-Gaussian.
Better to use a Gaussian mixture with

m=1

M M
bj(0) = Z Cimbim(0) = Z ijN((); Him> 3im)
m=1

Cjm is the component weight, or prior. For this to be a pdf it is necessary that

M
chmzl and ¢j,, >0

m=]

This increases computation and storage roughly proportional to the number of com-
ponents but also reduces word error rate (if there is enough training data).

(d) Use a full covariance matrix. This allows the correlations between feature ele-
ments to be explicitly modelled but requires (for d dimensional data) a matrix with
d(d + 1)/2 parameters. if the feature vector has strong correlations and there is
enough training data it will improve performance. Normal approach though is to do
global decorrelation and use (a mixture) of diagonal covariance Gaussians which are

more flexible.
The full covaraince matrix will greatly increase computation and storage (by a factor
of about d/2 for the output probability caluculations.

(e) Cross-word triphones. Convert each monophone to a cross-word context-dependent
phone model (model depends on the immediate left and right phone context as well
as the phone itself and the context extends across word boundaries). It allows co-
articulation to be explicitly modelled. This complicates training as the number of
models is greatly increased and some type of smoothing or parameter sharing is
reugired. Here it is suggested that state-tying via phonetic decision trees are used.
These group contexts so that models can be robustly estimated for the grouped con-
texts and unseen triphones can be dealt with. The phonetic decision tree is grown
automatically from training in a top-down fashion with questions chosen so as to
maximise an approximate likelihood of the training data. The questions for splits
are chosen from a pool of linguistoc questions which yield generalisation ability.

For cross-word triphones (from monophones) decoding is greatly complicated and
computational cost increases (and storgae since there will usually be far more pa-
rameters even with tying). It can have a large decrease in word error rate (factor of

two or more). .

[15%]

[20%)

[20%]

[25%)

3. N-gram Language Models and Weighted Finite State Networks

(a) Some aspects of N-gram language models that make them useful for speech and
language processing systems are: N-gram language models can be estimated from
large amounts of text, which makes it possible to build models for specific conditions
- tasks, genres, dialects, languages - if relevant data is available. The statistics
needed for estimation of N-gram model parameters are easily gathered, simply by
counting. N-gram models are predictive, or left-to-right, in nature, which makes
them suitable for use with (for instance) time-synchronous Viterbi search in speech
recognition. Three practical issues which arise are discounting, backoff, and pruning.
Discounting strategies modify the maximum likelihood estimation procedure so that
some probability mass is held aside for unseen events. Backofl strategies estimate
use lower-order N-gram probabilities when higher-order N-grams are not observed
(or infrequently observed) in the training text. Pruning strategies reduce the size
of estimated N-gram model by discarding infrequently occurring or uninformative
N-grams to reduce the memory required to store the model; pruning strategies trade

off performance vs memory usage. [20%)
(b) The probability assigned to a word sequence W = w; ... wg by a bigram language
model is
P(W) = P(wglwk_1) - - - P(wa|wy) P(wy) .

The predictive form of the language models is

K

P(W) = H P(wklwl . ’LUk__l)

k=1
where wy is a null token, i.e. P(w;|wg) = P(w;). The assumption which underlies
the bigram language model is that P{wg|w; ... wg-) = P(wi|wg—;) so that [20%]

P(M/) = :E[P(wklwk_l)

(¢) The stupid backoff scheme generates order k£ N-gram scores as follows

f(w:::—k 1) . .
f("’fii:l) if f(w_jyy) >0

S(wilwleiH) =
a S(wwiT;,,) otherwise

The scores assigned by this model are not normalized and so they do not form cor-
rect conditional probability distributions. Hence perplexity and other operations on
language models (e.g. entropy-based pruning) are not straightforward. These models
can also be very large. The benefits of the model are that the quantities are very
easily estimated, especially in a distributed environment with counts gathered from
partitioned text collections; this is largely due to the simplistic backoff scheme and

4

the lack of discounting. This is a ‘zero-backoff” model, so that an N-gram probability
is generated for all N-grams occurring in the text. The quality of the model can
be expected to improve since (as with other N-gram strategies) model components
approach the maximum likelihood estimates; hence this model can be expected to
perform comparable to other N-gram modeling techniques as the training data size
increases, as has been observed in practice.

(d)(i) The ML estimate of the bigram language model is derived by dividing the
bigram count by the count of the unigram history

Bigram Probability H Bigram Probability

P(a| <s>) =3/3 P(a|b)=1/3
P(b|a)=2/4 P(c|b)=2/3
P(cla)=1/4 P(b|c)=1/3

P(</s>|a)=1/4 | P(</s>|c) =2/3

(d)(i)

(d) i)

In the picture, the U arcs are failure arcs leading to the backoff state. These arcs have
weight «, corresponding to the stupid backoff from bigram to unigram. From the
back off state, arcs with the unigram probabilities lead to states consistent consistent
with the unigram history. With the failure arcs, paths through the back off state
are allowed onl y when a bigram is not present in the model. The score applied to
the sequence is exactly that of the stupid backoff bigram. If epsilon arcs are used
instead of failure arcs, paths through the backoff state are possible even if the bigram
pro bability should be applied. With multiple paths through the lattice, it may
happen (depending on the semiring) that the cor rect score is not assigned to an

input sequence.

[15%]

[10%)]

[15%]

{20%)

4. Machine Translation

(a) Alignment Error measures the number of non-NULL word alignments by which
the automatic word alignment differs from the refer ence word alignment. Suppose

there are two sets of alignments, e.g.
e 3 : automatic word alignments < produced by an alignment model
e B': reference word alignments « created by humans

Alignment error is computed as follows B
Step 1. Remove the NULL word links from B’ and B to form 5’ and B

Step 2. Compute AE(B, B'):
|B'| + |B'| - 2|B N B|
B+ 151

AE(B,B') =

Alignment Error is often used as an intermediate quality measure in translation
system development. If a portion of the parallel text collection is held out from
the alignment model training, it can be be manually word-aligned by transcribers
f luent in both languages and then used as a reference for computing alignment
error. The value of this is that variations in training sets, model configurations,
and parameter estimation schemes can be assessed without running a full translation
system. Alignment Error has been found to be a good, if not perfect, indicator of
the quality of word alignment models: large reductions in alignment error are often

correlated with improvements in translation quality. [20%]
(b)
1 J
P(f],a],Jle}) = ﬁpL(JII) 11 pr(files,) ~ Model-1
) =1
PUt el Tit) = pulID) T pr(res) paesl 1) - Model 2
) [20%)

(c) In a Flat Start Training Procedure, the goal is to gradually increase the complexity
of the alignment distribution during training. A typical procedure runs as follows

Model-1

e Model-1 Initialization — set pp(fl|e) to be uniform
e Perform EM (or Viterbi) parameter estimation until some stopping criterion

is met
e Output: Generate Model-1 word-aligned parallel text via Viterbi alignment

Model-2

e Model-2 Initialization — find pae(ils, J,I) and pr(fle) using the word-
alignments from Step 1 (c)

e Perform EM (or Viterbi) parameter estimation until some stopping criterion
is met,

e Output: Generate Model-1 word-aligned parallel text via Viterbi alignment

The stopping criteria are somewhat arbitrary and are set based on experimental
performance: the procedure could stop after a fixed number of iterations or when
relative likelihood gains drop below a threshold. [20%]
(d)(i)

I

1
P(file)) = X P(f alleg)= 3 - 3 P(f ailep)

a{ a1=0 ay=0
I
1:

I
Y 11 parelasls, 1, J) pr(filea,)
a1=0 ay=0 j=1

= Z pM2(a1’j)I) J)pT(flleal) X

a1=0

1
> parz(asls, I, J) pr{falea,) X

ag=0

1
o X " pua(ag)d, I J) pr(filea,)

as=0
J o1
= HZPMZ(in,I, Dpr(files)
e [20%)]

(d)(iil) Using Bayes’ Rule

. Pa":ilafJeI
P(a:i’ =1 lfilve{) = (]P(fi]|6{)1| 1)

Similar to the derivation for (i),

J oI
Plaj =1, fllel) = oo (17, I, Dpr(firles) 11 D pamalild, I, J)pr(files)
j=1,i#" i=0
Therefore
par2 (@17, I, Dpr(fyles) ey e Zoimo Paa2(ild, I, Npr(file)
[T Tio par2(ils, I, Jpr(file:)

paz(V]3', 1, Dpr(filex)
Yi—o Pa2(ilg", I, Dpr(fyle:)

P(aj’ = il'flJa e{) =

[20%)

