2008 UB HYAZ COMPOTER VISION Pl prROF R
YoROTICS C\POLLA

Module 4F12: Computer Vision and Robotics
Solutions to 2008 Tripos Paper

1. (a) Consider smoothing an image, first with a Gaussian of standard deviation o7,
then with a Gaussian of standard deviation oy:

5(z) = goa(2) * (901 () * I(2))

Since convolution is associative, we can write this as the convolution of the image
with the kernel gyo(z) * go1(2):

s(x) = (902(2) * g1 (z)) * I (2)

The easiest way to evaluate the convolution of two Gaussians is to find their Fourier
transforms and then multiply them in the frequency domain. I g,(z) < G,(w),

then:
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Hence

w o

Go2(2) * go1 (1)  Gaa(w) X Gy1(w) = exp (_ 22 %) % oxp (_ 22 2)

or

‘%2(:6) * gd(x) < Gm?(w) X Gor (w) = exp <—M>

The expression on the right is the Fourier transform of a Gaussian with standard de-
viation 1/0% + o#. Hence, the convolution of two Gaussians with variances o7 and
o3 is a Gaussian with variance o + o2. It follows that consecutive smoothing with

a series of 1D Gaussians, each with a particular standard deviation o2, is equivalent [ é
to a single convolution with a Gaussian of variance )", o7. .
(b) In practice, only a discrete set of scales can be considered, giving rise to an

image pyramid. For a given image size, we an octave of scales is examined, cor-
responding to Gaussians with standard deviations from ¢ to 2¢. The image is then

subsampled by a factor of 2 and the process is repeated for the next octave.

To improve efficiency, the above can be performed in an incremental manner. Within
the octave o to 20, for ¢-th interval (our of s) of the pyramid, we want g; = 2i/5g.
To achieve this incrementally:

Then from (a):
A ) 2
0 =1/0iy1 — 05
and since
_ i+1)/s
o1 = 20H1/
we have:
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The separability property of the Gaussian function should also be used to reduce
the computational cost.
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2.

(a) The mapping from camera-centred coordinates (X, Y., Z.) to pixel coordinates
(u,v) involves a perspective projection onto the image plane (z,y) followed by an
anisotropic scaling and translation in the image plane to account for the dimensions

and positioning of the CCD array.

The perspective projection is a non-linear operation in Cartesian coordinates:
fXe Y = fYe

ZC ’ ZC
where f is the focal length of the camera. This can be rewritten as a linear operation
in homogeneous coordinates:

[

ST f 0 00 i(/c
syl=10 f 0 0 Zc
S 0 010 1C

The mapping from image plane coordinates (z,y) to pixel coordinates (u,v) is
given by:

u=ug+ kyxr, v =19+ kyy
where the optical axis intersects the CCD array at the pixel with coordinates (ug, vo)

and there are k,, pixels per unit length in the u direction and k, in the v direction.
In homogeneous coordinates, this becomes:

su ky, 0 wug| |sx
sv|l =0 ky vyl |sy
S 0 0 1 S
Concatenating the two transformations, we obtain
SU kE.f 0 wuy O 'i(,c
sv| =10 kyf vy O ZC
s 0 0 1 0 1c

(b) Under weak perspective projection, we assume that all points lie at approxi-
mately the same depth Z,4 from the camera. This allows the projection to be rewrit-
ten as follows:

SUA kof 0 0 upZa i(,c
sva|l = | 0 kof 0 1524 Zc
S 0 0 0 ZA 1C



(c) Weak perspective is a good approximation when the depth range of objects in
the scene is small compared to the viewing distance. A good rule of thumb is that
the viewing distance should be at least ten times the depth range.

The main advantage of the weak perspective model is that it is easier to calibrate
than the full perspective model. The calibration requires fewer points with known
world position, and, since the model is linear, the calibration process is also better
conditioned (less sensitive to noise) than the nonlinear full perspective calibration.

(a) The mapping from world plane to image plane is an affine transformation under
the weak perspective model, which is a good approximation when the depth range
of objects in the scene is small compared to the viewing distance.

Projective transformation is linear in homogeneous coordinates:

11 T2 ti3
w = |fo oo o3| W
I31 132 133

Affine transformation is its special case t3; = t35 = 0 and thus has 6 DOF as the
transformation matrix is defined up to a scale factor.

Translation (2 DOF) Scale (1 DOF) Rotation (1 DOF) Shear (2 DOF) E "]

]

(b) The additional 2 DOF define fanning by specifying the horizon line:



Fanning (2 DOF)

(a) The task of matching features between left and right images can be simplified
using several constraints:

Epipolar: the stereo camera geometry constrains each point feature identified in
one image to lie on a corresponding epipolar line in the other image. If the
cameras are calibrated, then the equation of the epipolar line can be derived
from the essential matrix. For uncalibrated cameras, it is possible to estimate
the fundamental matrix from point correspondences and derive epipolar lines
from the fundamental matrix. Epipolar lines meet at the epipole: this is the
image of one cameras optical centre in the other cameras image plane. There
are two epipoles, one for each image.

Uniqueness: For scenes containing only opaque objects, each point in the left im-
age has at most one match in the right image.

Ordering: Corresponding points lying on the surface of an opaque object will be
ordered identically in left and right images. The ordering constraint will not
necessarily hold if the points do not lie on the surface of the same opaque
object.

Figural continuity: When distinguished points lie on image contours, we can some-
times use figural continuity as a matching constraint. ’

Disparity gradient: If surfaces are smooth, then point disparities (differences in
location between left and right images) must be locally smooth. So a further
constraint comes from imposing a limit on the allowable spatial derivatives
of disparity.
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(b) See (a) under Epipolar. [Q./]

(c) The weak perspective camera model is W = Pwpf(, where
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If we assume, without loss of generality, that the left camera is aligned with the
world coordinate system (so that R, = I), then the camera matrix reduces to

f]fu’ru O O fkuTa: —I— U()Zéw
0 fk'u’r‘22 0 fvay + /UOng
0 0 0 Za

Discarding the nonlinear constraints, we obtain affine models for the left and right
cameras:
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Eliminating X and Y from the above equations gives

U—Pi4 UV — P2g
u' = Plu — + pI12 + pllgz + pI1.4
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Eliminating Z we obtain
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or, alternatively
av' + '+ cu+dv+1=0

We can rewrite this in matrix form:

U
[u' v 1] F4 |v| =0
1
where F 4 is the affine fundamental matrix:
0 0 a
Fa=10 0 bl =0
¢ d 1

By inspection, F 4 has zero determinant and therefore maximum rank 2.

(a) Given 8 or more perfect correspondences (image points in general position,
noiseless), I can be determined uniquely up to scale. In practice, we may have
more than 8 correspondences and the image measurements will be noisy. The sys-
tem can then be solved by least squares or using a robust regression scheme to reject
outliers. The linear constraint does not enforce that det F = 0 and the epipolar lines
do not meet at a point. Nonlinear techniques exist to estimate I from 7 point corre-
spondences, enforcing the rank 2 constraint.

Given F', we can establish correspondences with relative ease. If we know the in-
trinsic camera parameters K, we can also find the essential matrix, decompose E
into T' and R, and recover metric structure by triangulation. Without K we can only
recover structure up to a 3D projective transformation, which can later be disam-
biguated using further constraints.

(b) [This is bookwork] One answer can include interest point detection and their
robust matching as in 3(d). Alternatively, a boosted classifier cascade or a support
vector machine can be used.



